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A large number of hydrological phenomena may be regarded as realizations of space-time random 
functions. Most available hydrological data sets exhibit time-rich/space-poor characteristics, as well 
as, some form of temporal periodicity and spatial non-stationarity. To better understand the 
space-time structure of such hydrological variables, the observed values at each measurement site are 
considered as separate, but correlated time series. Moreover, it is assumed that the time series are 
realizations of a mixture of random functions, each associated with a different temporal scale, 
represented by a particular basic variogram. To preserve the observed temporal periodicities, the 
experimental direct and cross variograms are modelled as linear combinations of a number of hole 
function variograms. In a further step, the principal component analysis is used to determine groupings 
of measurement stations at different temporal scales. The proposed procedure is then applied to 
monthly piezometric data in a basin south of Paris, France. The temporal scales are determined to be 
the 12-month seasonal and the 12-year climatic cycles. At each temporal scale different spatial 
groupings are observed which are attributed to the contrast between the nearly steady state climatic 
variations versus the almost transient seasonal fluctuations. 

1. INTRODUCTION 

A great number of variables in hydrology can be viewed as 
spatiotempora! processes. Monthly precipitation readings or 
ß '.daily piezometric measurements may be considered as 
space-time functions presenting continuous complex fluctu- 
ations. Geostatistics offers a variety of methods to model 
such processes as realizations of random functions. These 
procedures, however, have been primarily applied to spatial 
.data. Most published works in geostatistical hydrology also 
st•ow a tendency to de-emphasize the role of the time 
ß mension in order to comply with spatial models. Temporal 
integration of variables or steady-state assumptions are 
corn.mon approaches to accomplish this spatial conversion. 
For instance, one may consider annual rainfall depths in 
•ce as a regionalized variable. Steady-state piezometric 
satface is another example of a complex spatial function. 
Applying such space-oriented approaches to spatiotemporal 
processes, however, may lead to the loss of valuable infor- 
mation in the time dimension. 

One obvious solution to this problem is to consider the 
spatiotemporal phenomenon as a realization of a random 
function in n + 1 dimensions (i.e., n dimensions in the 
physical space plus one time dimension.) This approach 
demands the extension of the existing spatial techniques into 
the space-time domain. Despite the straightforward appear- 
ance of this extension, there are a number of theoretical and 
.practical problems that should be addressed prior to any 

successful application of geostatistical methods to space- 
time data. These problems include qualitative differences 
between spatial and temporal processes, imbalance between 
qmntities of temporal and spatial information, and the 
•esence of temporal periodicity and spatial non-stationar- 
i. ty. 
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There are some major differences between temporal and 
spatial phenomena. For example, the one dimensional tem- 
poral data is ordered, while the usually 2 or 3 dimensional 
spatial variables do not exhibit such order, as past, present, 
and future. Moreover, a spatiotemporal phenomenon con- 
tains temporal and spatial scales which are fundamentally 
different, and cannot be compared to each other in a physical 
sense. To resolve this difference an operational solution is to 
split the space-time correlation either into a product [Rod- 
riguez-Iturbe and Mejia, 1974], or a sum [Bilonick, 1987; 
Rouhani and Hall, 1989] of space and time components. 

A further problem is caused by the typical arrangements of 
hydrological data sets. These sets are usually composed of 
few scattered clusters of observation points, each with a long 
time series. Such configurations are often dictated by the 
economy of sampling that yields information which is rich in 
time, but poor in space. As a consequence, the accuracies of 
the estimated temporal and spatial structures are quite 
different. 

Another important issue is about the fact that many 
space-time data exhibit some form of temporal periodicity 
and spatial non-stationarity. One usually observes a variety 
of temporal periodicities, such as: periodic seasonal cycles, 
pseudo-periodic climatic cycles, as well as, non-periodic 
long-term trends. The periodic component can be ap- 
proached in two different ways serving different purposes. 
The first approach regards the periodic component as a part 
of the trend, where estimation is conducted subject to 
periodic unbiasedness conditions, such as in trigonometric 
kriging. This method appears to be more efficient for filtering 
periodic components [see Seguret, !989]. The second ap- 
proach, on the other hand, considers the series as stationary, 
where the periodic component is included in the correlogram 
or the variogram (see, for example Chatfield [1984, p. 112]). 
This latter method, which is suitable for data analysis based 
on nested variograms or spectral analysis, has been adopted 
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in this paper to better understand the spatiotemporal struc- 
ture of a hydrological data set. 

The temporal periodicities are often superimposed by 
strong spatial drifts. This spatial non-stationarity is not 
always limited to the mean. In certain instances, even when 
local stationarity of mean can be justified, the spatial vario- 
grams still show wide variations. For example, the portion of 
an aquifer with a closer hydraulic contact with surface 
waters exhibits a wider range of fluctuations, when com- 
pared to the more confined zones. In some cases, these 
spatial non-stationarities may be ignored, in others, how- 
ever, they raise serious doubts about the homogeneity 
assumption. 

In response to these problems, we decided to take a 
different approach, in which the time series at each measure- 
ment point are considered as separate, but correlated one- 
dimensional regionalized variables. In other words, we focus 
our attention on the dimension which is richer in informa- 
tion. We believe that our proposed approach is more suited 
to deal with the apparent spatial non-stationarities and 
temporal periodicities in our data sets. These can be treated 
more efficiently, if measurements at each site are considered 
as realizations of a separate random function. This collec- 
tion, composed of a finite number of one-dimensional ran- 
dom functions, can be considered as a family of correlated 
random functions. The only drawback is the increase in the 
number of direct and cross variograms or covariances, 
which need to be modelled and estimated. If m observation 
points are considered, the number of involved structures 
amounts to m(rn + 1)/2. However, in many studies, the 
number of measurement points are limited and so the pro- 
posed multivariate approach can be applied quite easily. 
Given the inherent imbalance in hydrological space-time 
data, this approach appears to be a rational alternative. 

Solow and Gorelick [1986] propose a similar approach to 
deal with streamflow data, where measurements from each 
gage are considered as separate but correlated time series. 
Their approach is based on simple co-kriging (i.e., linear 
co-interpolation without any constraint on weights) of 
streamflow residuals which are derrended prior to the esti- 
mation. Covariance values are determined experimentally 
and no model is fitted. Such an approach demands the 
additional verification of positive definiteness of the covari- 
ance matrices that are calculated on a sample set with 
missing values. The proposed approach by Solow and 
Goretick [1986] is only applicable to regularly spaced mea- 
surements in time. The above authors apply their procedure 
to the co-kriging of streamflow residuals at missing time 
intervals which are then added to the historical averages to 
determine missing streamflow values. In the present work, 
we make our geostatistical model more general by requiting 
a weaker stationarity hypothesis in the time dimension, and 
by making it applicable to measurements taken at irregular 
time intervals. Furthermore, modelling direct and cross 
variograms at different time scales adds more insight about 
the data, which will be discussed later. In an additional step 
we propose to use the principal component analysis to 
determine groupings of measurement stations at different 
temporal scales. 

The proposed approach allows temporal estimation, such 
as estimation of missing data, hindcasting, and forecasting, 
which is appropriate for cases of few gages with long time 
series. This approach, in its present form, does not allow 

spatial estimation at an ungaged site. There is, however, 
another way that our multivariate approach can be applied to 
spatiotemporal data that permits spatial estimation. This is 
accomplished by viewing measurements in space at each 
time interval as realizations of a separate but correlated 
random function. Spatial interpolation and extrapolation can 
then be conducted by calculating direct and cross vari0- 
grams in space and using time realizations t +_ r, ß = 1,..., 
T, as auxiliary correlated variables. In the following sec- 
tions, we focus on the former approach, where the spa- 
tiotemporal data is viewed as a multivariate time series 
process. 

2. MULTIVARIATE APPROACH 

Description of multivariate geostatistical estimation pro- 
cesses can be found in the works of such authors, as 
Matheron [1971], Journel and Huijbregts [1978], and Myers 
[1982]. Wackernaget [1988] proposes a multivariate tech- 
nique to interpret spatial information, based on a combina- 
tion of variography, principal component analysis, and co- 
kriging. In the present work, we consider a spatiotemporal 
data set, {zi(ta); i = 1, .--, N; a = 1, -'- , T}, measured at 
N locations at T time intervals, as samples of a set of N 

regionalized variables. These variables in turn can be viewed 
as a realization of a set of one-dimensional random functions 
{Zi(t); i = 1, ..., N}. In this paper, we deal with a set of 
monthly piezometric heads measured at N wells over a 
period of up to T months. So we consider the piezometric 
data at each well to be a realization of a temporal random 
function, which is correlated to random functions associated 
with the other wells. 

We then postulate the so-called "intrinsic" hypothesis 
that the increments, Zi(t a) - Zi(ta + •'), •' time intervals 
apart, are second order stationary, 

E[Zi(t) - Zi(t + r)] = 0 

z(t + -z(t + 

where yii(r) is defined as the cross variogram. In the 
particular case where variables themselves, Zi and Zj, can 
be assumed second-order stationary and uncorrelated for 
large time lags, 

y O.( q' ) --'> O' ij for r ---> 

where crij is the covariance of Zi and Zj. 
The experimental value of this variogram can be calcu- 

lated directly as, 

Tt 

Y0'(*/•) = (1/2r/•) • {(zi(ta) - zi(ta + r')} 

ß - + 
where •-' is the time lag belonging to a class of lags rk, and T• 
is the number of increment pairs in such a class. 

3. LINEAR MODEL OF COREGIoNALIZATION 

Using the technique of nested variogram modelling [Jour- 
nel and Huijbregts, 1978], the experimental direct and cross 
variograms of the observed spatiotemporal data are mod- 
elled as sums of variograms at different temporal scales, 
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•,}:(r), which in turn, can be defined in terms of elementary 
variogram functions, g,,(r), 

'•//j( "'J' ) Z ")/U ('T') -- l, = It b(ig.(r) 
II = J It = j 

(4) 

The elementary variogram functions, gu(•'), have to be 
c0nditionally negative definite, and the matrices of coeffi- 
cient b/j, for fixed u, must be positive semi-definite. This 
multivariate model considers the phenomenon of interest to 
be generated by a sum of several random processes, each 
related to a specific temporal scale, as defined by its corre- 
sp0nding gu('r) ß The coefficients b/j are determined semi- 
automatically by the computer program LINMOD, devel- 
oped by Wackernage! [1989]. Recently, a more powerful 
least squares fitting procedure has been proposed by Gou- 
lard [ 1989]. 

To preserve the periodic behavior of our data in time, we 
have used the so-called "hole function" variograms as our 
basic models, defined as 

g,(r) = 1 -exp (-r/r,,) cos (2rrr/ll,) (5) 

where ru represents the range or the extent of oscillation of 
the hole function, gu(•'), while/,, is the period of the cyclic 
variogram. A hole function variogram is a valid model for 
one-dimensional processes for positive values of r u, [u, and 
r. In R 2 it is valid for !, > 2rrr u while in R 3 it is valid for 
l•-> 2(3)l/2z'r,, [Yaglom, 1986]. The above basic variograms 
can represent cyclic trends in the piezometric data, including 
the 12-month seasonal trend and the longer climatic cycle. 

Experimentally these basic processes can only be distin- 
guished if their variograms have an impact on the shape of 
experimental curves. If this is the case, it would be possible 
to decompose the variogram into several temporal vario- 
grams, that leads to an analysis of the relationship between 
variables at different temporal scales. These relationships 
are described by the N x N matrices B u of coefficients bb .• 
denoted as coregionalization matrices. The characteristics 
which are exhibited by each B u matrix may be quite different 
from the one that is implied by the classical variance- 
c0variance matrix, V. In fact, under the same assumptions 
as for relation (2), V is related to the B,, as follows 

s 

u= 1 

(6) 

which suggests that ¾ is apparently a mixture of correlation 
structures at different spatial scales. 

Each coregionalization matrix can be viewed as the vari- 
ance-covariance matrix of a particular temporal scale. So a 
principal component analysis in R-mode can be performed 
by decomposing them, such that 

with 

B,,Q,, = DuQ u (7) 

T 
QuQu = I (8) 

where, Qu is an orthonormal matrix of eigenvectors, D u is a 
dtagonal ma,trix of eigenvalues, I is the identity matrix, and 
superscript T implies a transposed matrix. The eigenvalues 

maximize the variance represented by the trace of B, and the 
eigenvectors can be chosen to span an orthonormal system 
of axes called principal axes [see Courant and Hilbert, 1968]. 
The principal axes associated with most important eigenval- 
ues explain the essential features of a coregionalization 
matrix. 

The coordinates of the variables on a pair of principal axes 
lie inside a unit circle centered at the origin because the 
orthonormal matrix Qu satisfies the equation of the unit 
hypersphere [Voile, 1985, p. 116]. The relative positions of 
variables on the above unit circle allow us to sort them in 
different groups. So for each time scale, associated with a 
gl,(r), we can determine different groupings, which may 
reveal varying spatial characteristics of our temporal varia- 
bles. 

The above implies that the original set of correlated 
random functions {Zi(t); i = 1, ß ß -, N} are decomposed into 
a set ofuncorrelated random functions {Y•'(t); u = 1, ß ß ß, S; 
p = 1, ß ß ß, N}, each defined as the regionalized factor ofpth 
principal component at uth temporal scale, such that 

S N 

i U(t) Zi(t): •'• Z a,,p 
u=lp=l 

(9) 

which defines the linear model of coregionalization in a 
i 

space-time context. The transformation coefficients, aup , are 
contained in matrices A, and obtained by setting, 

A/, = Qu(Dli) 1/2 ( I 0) 

This paper primarily focuses on the principal component 
analysis at different temporal scales. It should be noted, 
however, that varying forms of mapping can be performed 
based on co-kriging of measured values. For instance, given 
our piezometric data, we can estimate the following: 

I. The piezometric head at ith observation well at an 
arbitrary time interval, Zi(t0), which allows hindcasting as 
well as forecasting; 

2. The temporal component Z?(to) that represents the 
behavior of the piezometric head at the ith observation well 
of the uth temporal cyclic trend at an arbitrary time interval, 
which may be used for filtering and forecasting purposes; 
and 

3. The regionalized factor Y3'(to) of the pth principal 
component at the uth temporal scale, where for p = 1, it 
reflects the essential regional features of piezometric surface 
at uth cyclic trend. 

In all above estimations the desired value is calculated as 

a linear sum of observed data, such as 

N T 

j=la=l 

(11) 

where, A• is the estimation weight of the observed value at 
the jth location at the ath time interval. 

The co-kriging of Zi at an arbitrary time interval to is a 
form of forecasting or hindcasting that can be used for 
estimation of missing values. This estimate is yielded by 
solving the following linear system 
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for 

N T 

Z Z x = to) 

T 

/3=I 

(12) 

j=I,'",N a=l,"',T 

where, y2k(t,, t• is the cross variogram between Zj(t,) and 
Zk(t•), $ji is a Kronecker delta, and •j is the jth Lagrange 
multiplier. 

The uth temporal component at the ith location at an 
arbitrary time interval to, Z['(to) can also be estimated by a 
similar co-kriging system. The local mean of each temporal 
component of the groundwater data may be arbitrarily set to 
zero, which then reflects the general trend of piezometric 
head variations at a specific temporal scale, such as seasonal 
or climatic cycles. 

The co-kriging system for estimation of Z?(to) is 

for 

N T 

Z •'• A • Yjk(ta, t g) -- •j = bj•g,,(ta, to) 

T 

E ^½=0 
fi=l 

(13) 

j=I,'",N a=l,"',T 

where, bj[ are coefficients as defined in Equation (4) and 
g,(t,, to) is the uth elementary variogram between time 
intervals t,• and t 0. 

The regionalized factor Y•'(to) representing the pth princi- 
pal component at the uth temporal scale can also be esti- 
mated. In our example, the first principal component at any 
scale represents a regional index for variations of piezomet- 
ric surface at different cycles. The co-kriging system 

for 

N T 

• •'• A • Yjk-(ta. t g I•j a.vg.(t•. tO) 
/•=l fi=l 

T 

fi=l 

(14) 

j=I,'",N a=l,"',T 

i 
where, aup are transformation coefficients as defined in 
Equation (9), and g,(t,, to) is the uth elementary variogram 
between time intervals t, and t 0. For more information 
readers are referred to WackernageI [1988, 1989], and Wack- 
ernagel et al. [1988] for the application of the above multi- 
variate procedure to spatial data. An alternative viewpoint, 
as mentioned in the introduction, is the one implied by 
trigonometric kriging that considers periodicity as a part of 
the trend [Seguret, 1989]. 

Watershed 

Boundary 

E tent of the 
Leaky Layer 

: 4 
0 10 

krn 

ß Observation Well 

Fig. 1. Juine and Essonne Basins, located to the south of Paris, 
France. (Observation wells are identified by letters A to P.) 

4. CASE STUDY 

Our data set is composed of monthly piezometric readings 
from January 1967 to December 1982 at 16 observation wells 
in the Essonne and the Juine watersheds located in the Seine 
River basin in France, as shown in Figure 1. This region is 
underlain by two aquifers, which according to the geological 
time of their formations are termed as the Oligocene and the 
Eocene layers. The upper unconfined Oligocene layer is 
separated from the semi-confined lower Eocene aquifer by a 
leaky layer which covers the northern part of the region as 
shown in Figure 1. In the southern section of the basins there 
are no well defined boundaries between these two layers. All 
the observation wells used in this work represent piezomet- 

100- 

(m) 

90- 

104 

-102 

hA 
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10(17 1070 1060 166t 

Fig. 2. Monthly piezometric heads at Wells A and B, denoted by 
ha and ha, respectively. 
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Fig. 3. Periodograms of monthly piezometric heads at Wells A 
and B. (Frequencies are given in 2rr/months.) 

• (h) 

y 

• Oh) 

Fig. 4. Experimental and fitted variograms for Wells A and B as 
well as their cross variogram. (The dotted lines around the cross 
variogram represent its actual limits, defined by cases of perfect 
positive and negative correlations.) 

tic heads in the Oligocene layer. For more information about 
the geology and hydrology of this region readers are referred 
to the report prepared by Centre d'Informatique G•ologique 
0fEcole Nationale Sup•rieure des Mines de Paris for Service 
Gdologique lle-de-France [1984]. 

The analysis of our raw data indicated that piezometric 
heads in every well exhibit two cyclic trends. To illustrates 
these features, readings from well A and B are shown in 
Figure 2. As can be seen both show the impacts of the 
12-year climatic cycle and the 12-month seasonal trend. The 
Fourier analysis of the available information, despite being 
based on limited data, clearly indicates the relative domi- 
nance of these two cycles in the resulting periodograms, as 
shown in Figure 3. Although these periodograms should be 
viewed with caution, more detailed climatological study of 
the region [Service G•ologique Ile-de-France, 1984] con- 
firms the existence of the above 12-year and 12-month cycles 
based on the analysis of long precipitation records. There- 
fore, it seems logical to view piezometric data at each well as 
the sum of two cyclic random processes, each with a hole 
function variogram as defined by Equation (5). The first hole 

function variogram represents the seasonal variations, while 
the second one describes the observed climatic cycles. 

Further study of our data, however, reveals that the 
relative impacts of these cycles may vary from well to well. 
For instance, Figure 2 clearly illustrates that WeI1 B has a 
much stronger seasonal component than Well A. Such clear 
point-to-point variations cast doubt on the assumption of 
spatial stationarity. In fact, it is more realistic to view 
measurements from each well as a realization of a separate 
temporal variable, which in turn, is correlated with random 
variables of other wells. This method not only accommo- 
dates for the observed non-stationarities, but also preserves 
the physical relationship that exists between these piezomet- 
ric readings through the cross-correlation structures. Fur- 
thermore, the general emphasis of this multivariate proce- 
dure is on the time dimension described by the time scales of 
g,,(r), while the spatial variations are included in coregion- 
alization matrices. Such an approach is more consistent with 
the available time-rich/space-poor data sets. 

At the next stage the 136 experimental direct and cross 
variograms were plotted and automatically fitted using two 
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hole function basic variograms with different ranges and 
periodicities. The first basic variogram represents the sea- 
sonal cycle with a period of 12 months and a range of 120 
months, while the second one depicts the climatic trend with 
a period of 144 months and a range of 1440 months. The least 
squares fits yield the corresponding coregionalization coef- 
ficients, b/j: as defined in Equation (4). Generally, the fits are 
quite satisfactory. Figure 4 shows three sample variograms 
out of a total of 136. The illustrated structures are the direct 

variograms at A and B and their cross variogram as well as 
their fitted variograms. The dashed intervals on the cross 
variogram show the cases of perfect positive and negative 
correlations. Observed and fitted cross variograms should 
not go beyond these limits. 

Having determined the coefficients b/j, we can perform 
principal component analysis on the resulting two coregion- 
alization matrices and the original variance-covariance ma- 
trix. The results are demonstrated on unit circles (Figure 5) 
showing the coefficients of each well in the first and the 
second principal axes of each matrix. As can be seen the first 
two axes describe a large percentage of fluctuations of each 
matrix: 96.7% for variance-covariance matrix, 98.8% for 
12-year climatic coregionalization matrix, and 98.5% for 
seasonal coregionalization matrix. The patterns for the vari- 
ance-covariance and the climatic matrices are very similar, 
which does not distinguish between wells based on their first 
principal axes. On the other hand, the seasonal matrix, 
shows drastically different patterns that permit us to sort the 
wells into two groups. Wells B, C, F, and to some extent A 
all have relatively strong seasonal components, while all the 
rest have minor or negligible seasonal variations. Figure 1 
reveals that these four wells are located in the southeastern 

corner of the Essonne basin. These results persuaded us to 
conduct further study of the hydrogeology of this area. Early 
studies have identified this area as a zone of low to moderate 

permeability with transmissivities ranging from 5 x 10 -3 to 
5 x 10 -2 m2/s. So we were expecting the readings from 
these wells show more moderate seasonal components rela- 
tive to wells, such as E, L, O, and P, whose transmissivities 
are as high as 3 x 10 -] m2/s. However, latter studies 
revealed that this zone has the lowest porosity in the 
Essonne and the Juine basins. While the porosity in these 
basins varies between 2 to 13%, the porosity in the south- 
eastern zone is as low as 0.1%. So it seems the distinguishing 
factor is the porosity. This leads us to view each cycle 
dominated by a different flow regime. 

The seasonal cycle due to its short period could be 
regarded as a nearly transient flow condition. Considering 
the importance of storativity in the transient flow conditions, 
we see more pronounced monthly oscillations in the south- 
eastern corner that can be distinguished from the rest of the 
region. This seasonal cycle appears to strengthen as one 
move from A to B in a southeasterly direction, as indicated 
in Figure 5. The climatic cycle, on the other hand, is 
relatively slow and represents an almost steady state condi- 
tion. At such a condition the flow is determined by the 
transmissivity, while the impact of the storativity is mini- 
mized. So due to mild variations of transmissivity in this 
region, all wells exhibit similar characteristics at the climatic 
scale. These observations clearly confirm the results of our 
multivariate analysis. 

b 

c 

Fig. 5. Principal component results shown on unit circles of the 
first two axes for (a) the classical variance-covariance matrix; (b)the 
climatic coregionalization matrix; and (c) the seasonal coregional- 
ization matrix. (Each well is identified by its corresponding letter.} 

5. CONCLUSION 

The multivariate geostatistica! approach enables us to 
study space-poor/time-rich geohydrological data sets by 
paying due attention to the temporal dimension. Viewing 
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each time series as a realization of a correlated random 
function, composed of a sum of multi-scale random pro- 
cesses, permit us to analyze the data without masking the 
important temporal periodicities and spatial non-stationari- 
ties. As noted earlier, this approach can easily be used to 
estimate the missing data or to forecast piezometric heads at 
each observation well. Similarly, the temporal components 
at each observation site as well as regional index at each 
temporal scale can be estimated and used for filtering pur- 
poses. Current studies, such as Switzer [1989] on weighting 
of fitted stationary covariances with observed non-stationary 
spatial covariances, or Seguret [1989] on trigonometric krig- 
ing will complement our proposed approach and makes it an 
efficient procedure for space-time estimation. 
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