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A B S T R A C T

Reusing low to moderately excavated soils within land redevelopment projects necessitates among others to
verify the geochemical compatibility of these soils with the receiving site. Optimizing excavated soil reuse at
redevelopment project or urban scale is compelled by comparing their concentrations with threshold values
based on quarter or urban geochemical background. Because urban soil geochemistry varies both at horizontal
and vertical scale, background might vary spatially. It is thus necessary to consider also the vertical dimension of
the geochemical background. However, available in depth data on urban soils consist mainly in pollution di-
agnoses. The representability of these data is then called into question, along with the method employed to
determine geochemical background.

To answer this question, we compare herein three standard statistical computation algorithms and examine
their sensitivity to various parameters: probability distribution, number of data, proportion of values below the
limit of quantification, and sampling schema heterogeneity. After performing a set of theoretical computations,
simulations are run and application tests are conducted on actual datasets.

Results reveal a variability in the calculated thresholds depending not only on the applied statistical methods
used, but also on the distribution law, number of samples and sampling heterogeneity. It appears to be im-
possible therefore to apply these statistical methods on datasets that are not dedicated to the geochemical
background without conducting a preliminary data study, ultimately followed by a data sort. It is in fact ne-
cessary to verify dataset consistency with the notion of an anthropogenic geochemical background. In addition,
according to the objectives associated to the valorisation of excavated soils (economic benefit of excavated soils
and/or environmental/health protection being prioritized), the thresholds (based on background) targeted may
be more or less conservative by virtue of adapting both the computational method and algorithm used.

1. Introduction

Given the socioeconomic changes and demographic pressures, many
countries are reorganizing their urban zones. In order to limit en-
croachment on farmland and natural habitat, cities are densifying and
transforming their former urban fabric (Kasanko et al., 2005; Inostroza
et al., 2013). This urban renewal effort generates significant volumes of
excavated soils (Cadiere and Masselot, 2011; Magnusson et al., 2015).
The reuse of low to moderately contaminated soils constitutes a major
economic and ecological challenge (Blanc et al., 2012; Chittoori et al.,
2012; Le Guern et al., 2016; Kenley et al., 2011; Magnusson et al.,

2015). This is the case for the low and moderately contaminated soils
present in many places in the city. Diffuse contamination of soils occurs
indeed on the whole city, due to the impacts of the various anthropic
activities (industrial, domestic, agricultural, traffic, material or waste
deposits) (Le Guern, 2017). Point-source contamination are frequent
also e.g. in derelict industrial land (Lark and Scheib, 2013; Limasset
et al., 2018; Manta et al., 2002; Sun et al., 2010).

Reusing low to moderately contaminated excavated soils within
land redevelopment projects necessitates among others to verify their
geochemical compatibility with the receiving site. Actually, we notice
two main approaches in Europe to allow or even enhance the reuse of
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such excavated soils. In the first one, the adequacy of the geotechnical
properties of the soils to be reused with the needs of the receiving site is
first studied (eg. in Sweden). Once this criteria is fulfilled, the geo-
chemical compatibility with the receiving site is verified. In the second
approach the geochemical compatibility between the excavated soils
and the receiving site is first verified (eg. in France). Once the geo-
chemical criteria is fulfilled, as well as potential environmental and
sanitary impacts (at least in France), then the geotechnical compat-
ibility is verified. In France, the aim of the geochemical verification is to
avoid degrading soil quality of the receiving site (Blanc et al., 2012;
Coussy et al., 2017).

Anticipating the reuse of low to moderately contaminated excavated
soils at redevelopment project or urban scale is an opportunity to op-
timize their reuse. This is possible by fixing threshold values based on
quarter or urban geochemical background. Because a) urban soil geo-
chemistry varies horizontally and vertically due to urban soils hetero-
geneity and b) excavation and reuse of soils occurs in 3D, it is thus
necessary to consider also the vertical dimension of the geochemical
background.

There have been however until recently nore dedicated in depth
geochemical sampling protocol neither campaigns, especially in France.
It is necessary thus to use available data. Most of them are acquired for
other purposes, mainly within the frame of pollution diagnoses.

From the standpoint of reusing excavated soil within an urban set-
ting, the urban soil layer is considered to extend several meters deep
and is likely to generate excavated soils during land development
projects. This layer incorporates the anthropogenic deposits that are
widely encountered in urbanized areas (Le Guern et al., 2016). The
urban geochemical background is defined for purposes herein as all soil
contents related to either natural or anthropogenic phenomena spread
throughout the target zone. It thus encompasses typical contents (i.e.
diffuse natural content and anthropogenic pollution) yet excludes the
geochemical anomalies it is supposed to separate (Guillén et al., 2011;
Matschullat et al., 2000; Reimann et al., 2005; Salminen and
Gregorauskien, 2000). For the sake of convenience, this value range is
typically represented by its upper bound, or threshold limit, whose
determination in an urban setting is complicated by the extreme soil
heterogeneity and high level of spatial geochemical variability (Guillén
et al., 2011; Jarva et al., 2014; Karim et al., 2015). Moreover, the
anomaly herein, and hence the computed threshold limit, depend of the
area of the investigated territory. Defining this anomaly will depend on
the scale chosen to proceed with the background determination, e.g.
urban district, metropolitan area. This scale must in particular be large
enough to have real local significance yet still enable generating a
sufficient number of data points to yield a robust statistical computa-
tion.

The literature presents several computational methods for deriving
the upper bound of the geochemical background, which will be referred
to below as “threshold”. The graphical methods (Matschullat et al.,
2000) rely on identifying inflection points in the cumulative frequency
curves. Overly sensitive to operator interpretation, these methods will
not be addressed herein. Among the statistical computational methods
focused on the threshold value, the three most common algorithms are:
1) a high-order percentile, in practice 95% or 90% (Ander et al., 2013;
Cave et al., 2012; McIlwaine et al., 2014; Rothwell and Cooke, 2015;
ISO Standard 19258, 2005), 2) the whisker obtained with the Tukey
percentile (Jarva et al., 2014; Reimann et al., 2005; Reimann and de
Caritat, 2017; Rothwell and Cooke, 2015; Tarvainen and Jarva, 2011),
and 3) the median absolute deviation or MAD (Reimann et al., 2005;
Reimann and de Caritat, 2017; Rothwell and Cooke, 2015). In light of
the differences among these three algorithms, their applicability to non-
dedicated datasets in determining the geochemical background be-
comes a cause for concern. We check therefore the possibilities of use in
this context of unspecified data, with unknown rates, likely to be high
anomalies.

This paper examine the properties and sensitivity of these three

statistical thresholds and evaluate their consistency with respect to the
urban geochemical background. The influence of data probability dis-
tribution is first assessed by means of theoretical computation for well-
known distributions. The sensitivity of thresholds to the number of
samples and the limit of quantification is then studied by simulation.
Next, an application to a real-world case reusing data not specifically
dedicated to the geochemical background will serve to evaluate the
influence of the directed sampling, its heterogeneity as well as the
importance of taking descriptive data into account. Based on these re-
sults, we discuss the notion of anomaly and the pertinence of computing
a threshold from data that have not been acquired for this specific
purpose.

2. Equipment and methodology

The three criteria most frequently found in the literature are re-
called first, followed by a presentation of the study approach. In relying
on the literature and various regulations proposing two thresholds as-
sociated with percentiles, computations are performed using percentiles
at 90% and 95%. It is important to notice that these calculation do not
take into account the localization (geographic coordinates) of the
samples.

2.1. Definition of the three statistical thresholds

Let Z be the studied variable (representing a chemical substance
concentration in the soils and subsoils). Let's denote Q50 as its median
(P(X < Q50) = 1/2) (with P: Probability), and respectively Q25 and
Q75 as the other two quartiles (P(X < Q25) = 1/4 and P
(X < Q75) = 3/4). The three criteria most widely used in order to
establish geochemical background thresholds are as follows:

– threshold associated with a high-order percentile (90% or 95%)
(Ander et al., 2013; Cave et al., 2012; McIlwaine et al., 2014;
Rothwell and Cooke, 2015; ISO Standard 19258, 2005):

= =andS Q S Q95 95 90 90 (1)

– threshold associated with the whisker, by means of Tukey's centile
(Jarva et al., 2014; Reimann et al., 2005; Reimann and de Caritat,
2017; Rothwell and Cooke, 2015; Tarvainen and Jarva, 2011) de-
fined as:

= + =S Q a Q Q with a 3 2( ) /whisker 75 75 25 (2)

– threshold associated with the MAD, median absolute value of the
deviations from the median, by means of the median method
(Reimann and de Caritat, 2017):

= + = =S Q b MAD with MAD median Z Q and( ) (| |) b 2MAD 50 50

(3)

2.2. Test cases

The empirical distributions of geochemical data for a given site,
metropolitan area or region do not systematically follow the same
statistical distribution (Karim et al., 2015; Reimann et al., 2005).

In order to study the influence of data distribution on the computed
geochemical background threshold, three basic probability distribu-
tions are examined herein: uniform, normal, and log-normal distribu-
tions. This investigation will determine if a systematic orderly re-
lationship exists between the thresholds values obtained should the
study population conform to any of these distributions. Emphasis is
placed on identifying whether one of the three thresholds is more
conservative (i.e. systematically yields the minimum value) regardless
of the associated distribution.

The subsequent step will focus on the case of a mixing of
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distributions. We verify whether the thresholds can differentiate the
two modes of a statistically heterogeneous population.

The influence of the number of samples collected is scrutinized next.
It is a well-known fact that some statistics, like low- or high-order
percentiles, are extremely sensitive to this number (see, for example,
Bernard-Michel and de Fouquet, 2005; Bernard-Michel, 2006, re-
garding an environmental context). The question is also raised over the
influence of the limit of quantification (LQ) actually present in the
“background” geochemical data. Several publications have underscored
this influence (Reimann et al., 2005; Rothwell and Cooke, 2015;
Sancho, 2016), yet without accurately quantifying it. Simulations will
be run to analyze the effect of the proportion of data below the limit of
quantification as well as that of the substitution value for such data.

The influence of spatial heterogeneity within the samples is then
examined on actual BRGM databank entries. The considered site is a
district in the French city of Nantes spanning approximatively 340 ha
with a land use historically dominated by industrial activity. The sub-
soil is characterized by a deep alluvial layer covered by various types of
fill material with a thickness of two to four meters. The volume of soil to
be excavated for the district restoration project was evaluated at ap-
proximatively 100,000 tons/year during the renovation works initiated
in 2015 and scheduled to last through 2025. The data stem from pol-
lution assessments and include samples of variable lengths extracted
from cored boreholes. The sampling is thus oriented in a particular
direction and intended to demarcate the polluted zones, with only few
reference samples typically located in a zone assumed not to be im-
pacted. Nearly 2500 boreholes containing 4400 samples between zero
and five meters deep were uploaded to the databank. This type of data,
which was not originally intended to compute a geochemical back-
ground, ultimately serves as the primary source of geochemical data
available in France for urban soils.

The computations are initially conducted on samples without taking
location into account. They are then replicated, this time in weighting
the data to correct for the influence of spatial irregularity in the sam-
pling. As a last step, the typology of fill materials is also incorporated
(Le Guern et al., 2016) in order to distinguish the effect of anthro-
pogenic soils on the geochemical background thresholds.

The data of the real site are spatially correlated, whereas the
drawings are independent for the theoretical calculations.

Most computations were performed with the software "Free R". The
Access 2016 and Excel 2016 applications within the Microsoft Office
suite plus ArcGis 10.2.2 were used for the computational and mapping
steps.

3. Results and discussion

3.1. Influence of the probability distribution

In this part, calculations are made for independent runnings of a
random variable.

3.1.1. Homogeneous case
The theoretical computation serves to specify the properties of the

three threshold values for a number of typical probability distributions.
Three distributions are examined herein: uniform, normal, and log-
normal distribution (Fig. 1).

Let's note that for all these distributions (theoretical or empirical),
S90 ≤ S95.

3.1.1.1. Symmetrical distribution. Let's denote Q50 as the median of the
Z distribution. Since the distribution is assumed to be symmetrical
about its median, Q75-Q50 = Q50-Q25. Consequently,

=
=

ZMAD median(| Q |)
Q Q .

50

75 50

which yields:
= +

= +
= +

s Q 2MAD
Q Q Q

Q (Q Q )

MAD 50

50 75 25

75 50 25
Since SWhisker = Q75 + a (Q75- Q25), and excluding the case where

Q75 = Q50, it thus follows that:

<a s s1, MAD Whisker

3.1.1.2. Uniform distribution. Let's now consider the uniform
distribution over the interval [0, Zmax] (the general case, [Zmin, Zmax],
is presented in Appendix A); while highly unlikely for geochemistry
data, this case still provides a basis for analysis. Hence, Q50 = 1/2
Z max and = =Q Z Q Z,max25

1
4 75

3
4 max , resulting in (detailed

computations are shown in Appendix A):

– S90 = 0.90 Zmax and S95 = 0.95 Zmax
– SWhisker = 3/4 Zmax + 1.5 (3/4 Zmax - 1/4 Zmax) = 3/2 Zmax
– SMAD = 1/2 Zmax + 2 (1/2 Zmax - 1/4 Zmax) = Zmax

which yields the following inequalities among the thresholds:

< < <S S S S90 95 MAD Whisker

The thresholds associated with the percentiles indicate that the
upper 10% or 5% of the dataset are not included in the geochemical
background. Yet nothing herein actually justifies this differentiation. In
contrast, the upper whisker would allow integrating data above Zmax:
an additional data point higher than Zmax would not necessarily be
considered therefore as an anomaly.

3.1.1.3. Normal distribution. Let's recall that for a reduced Gaussian
distribution, Q75 = 0.6745, Q90 = 1.282 and Q95 = 1.645.

The thresholds associated with the normal variable, Z = μ + σY
where Y is a reduced Gaussian, μ the mean and σ the standard deviation
of Z, are:

–
= + = +
= + = +

S µ Q , hence S µ 1.282 ;
S µ Q , hence S µ 1.645

90 90 90

95 95 95

–
= + +

= + +
= +

QS µ [ 1.5(Q Q )]
µ (1 2 1.5) Q

µ 2.698

Whisker 75 75 25

75

–

= +
= +
= +
= +

S µ 2 median (IZ µI)
µ 2 median (IYI)
µ 2 Q
µ 1.349

MAD i i

i i

75

The order of these thresholds is as follows:

< < <S S S S90 MAD 95 Whisker

It thus differs from that of the uniform case; more specifically, the
order of thresholds for the 95th centile and MAD method are reversed.

3.1.1.4. Log-normal distribution. In the case of a log-normal
distribution, Z = eμ+σY where Y is a reduced Gaussian. Two
computation modes are possible: the thresholds calculated for the
normal distribution can be exponentiated, leading to:

– S90 = eμ+1.282σ and S95 = eμ+1.645σ

– SWhisker = eμ+2.698σ

– SMAD = eμ+1.349σ

The order remains identical to the previous case since the ex-
ponential function is increasing:

< < <S S S S90 MAD 95 Whisker

The computation can also be performed directly on the log-normal
distribution, with the following formulae:
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– S90 = eμ+1.282σ and S95 = eμ+1.645σ, i.e. identical results to those of
the previous computation.

– SWhisker = eμ+σQ75 + 1.5 eμ (eσQ75 - e-σQ75)

which yields:
SWhisker = eμ+σ Q75 (5/2 - e-2σQ75)

– SMAD = eμ + 2 eμ median (I eσY-1 I)

In order to compare results, these thresholds are expressed as a
function of σ in the form of a threshold/eμ ratio (Table 1):

These results differ from those of the first computation. The order of
thresholds varies now as a function of σ as follows, with SMAD being
underlined for easier comparison:

– when σ ≤ 0.01, S90 < SMAD < S95 < SWhisker
– when σ ϵ]0.01; 0.75], SMAD < S90 < S95 < SWhisker
– when σ ϵ]0.75; 1], SMAD < S90 < SWhisker< S95
– when σ > 1, SMAD < SWhisker< S90 < S95

For highly dispersed distributions (σ = 5), the percentiles Q90 and
Q95 are far apart; on the other hand, when distributions are very tightly
centered around the median (σ= 0.01), the median-quartile deviation
is reduced. Consequently, for highly dispersed distributions (σ = 5),
SWhisker < S90, and vice versa for distributions with limited dispersion.

As such, not only the probability distribution but also, in the log-
normal case, the computational method influences the thresholds ob-
tained. The ranks of the 95th and 90th percentile thresholds vary with
respect to the whisker and MAD thresholds; they depend on the data
distribution (i.e. level of value clustering). Yet the observation can be
drawn that the MAD threshold always lies below the whisker threshold,
regardless of σ value. Indeed, whether applied to values above or below
the median, the absolute value|X-Q50|acts indiscriminately; typically
however, since lower values are less widely dispersed than higher va-
lues, this deviation is smaller than the Q75-Q25 interquartile deviation.

3.1.2. Heterogeneous case
Let's now consider mixing two distributions of the same type with

different parameters. The first mode is assumed to correspond to the
background while the second to the anomalies.

3.1.2.1. Combination of two uniform distributions. As shown in Fig. 2:

– m1 and m2: the minimum values of the first and second mode, re-
spectively;

– M1 and M2: the maximum values of the first and second mode, re-
spectively;

– α: proportion of the first mode in the combination.

The two modes are assumed to be disjointed, with
m1 < M1 < m2 < M2

The percentiles Qx are expressed as follows:

< = +if x : Qx m x [(M m )/ ]1 1 1

> = +if x : Qx m (x )[(M m )/(1 )]2 2 2

We are seeking herein at which conditions a threshold “S” separates
the two modes, i.e. M1 < S < m2.

Since the formulae for the three thresholds feature a percentile as
their first or only term (i.e. 95th for S95, 90th for S90, 75th for SWhisker,
and 50th for SMAD), these percentiles actually constitute the initial in-
equality constraint. As such, the 90th centile can only be positioned
between M1 and m2 if α equals 0.9, or 0.95 for the 95th centile. This
condition is rarely verified in a real-world case when using undedicated
datasets.

In the case of the upper whisker, a positive term is added to the 3rd
quartile; to ensure that the threshold satisfies the target conditions, this
quartile must belong to the first mode; hence α must exceed 0.75. This
hypothesis remains plausible since it implies that the anomalies account
for< 25% of all data. A second mode proportion above 0.25 may in
fact undermine its property of being an anomaly. The second condition
imposes that the threshold lies below the second mode.

Given that:

= + +
=

(Q Q ) m 0.75 [(M m )/ ] m 0.25 [(M m )/ ]
. [( )/ ]

75 25 1 1 1 1 1 1

0 5 M m1 1

it can be deduced that:

= + +m M m M mS 0.75 [( )/ ] 1.5 (0.5 [( )/ ])1 1 1 1 1Whisker

The condition can thus be written as follows:

= +m M mS 1.5 (( )/ )1 1 1Whisker (4)

The final condition for ensuring that SWhisker effectively separates
the two modes, in the case where anomalies account for< 25% of the
data, is therefore that Expression (4) lie below m2 (i.e. minimum of the
second mode).

Moreover, in the case of MAD, the initial constraint pertains to
placing the median, imposing an initial condition of α being> 0.5. This
requirement means that the background dataset must necessarily be
larger than the anomalous dataset. The two cases of α ≥ 0.75 and
0.5 ≤ α ≤ 0.75 will be studied in the following discussion.

• If α is greater than or equal to 0.75, then the threshold is expressed
as follows:

Since the uniform distribution is symmetrical, if α ≥ 0.75:

=
= + +

MAD Q Q
m1 0.5[(M m )/ ] m 0.25 [(M m )/ ]

75 50

1 1 1 1 1

then:

=
= + +

0.25[(M m1)/ ]
S m1 0.5[(M m )/ ] 2 (0.25 [(M m )/ ])

1

MAD 1 1 1 1

Hence:

= +S m ((M m )/ )MAD 1 1 1 (5)

Fig. 1. Distributions: uniform (a), normal (b), and log-normal (c).m andM denote the minimum and maximum values, and μ the average. The normal distribution is
illustrated using 4 different standard deviations.
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Since α < 1, then ((M1- m1)/α) > (M1- m1) and SMAD > M1.
If SMAD < m2, in the case where α > 0.75, the threshold may

separate the two modes.

• Moreover, if α lies between 0.5 and 0.75, then the threshold may be
expressed as follows:

Under the additional condition (Q50- m1) < (m2-Q50), i.e.
2Q50 < m2-m1

It can be written:

=
=

= + +

MAD Q Q
(1 ) [(M m )/ ]

S m 0.5[(M m )/ ] 2[ (1 )[(M m )/ ]]

50 ( 0.5)

1 1

MAD 1 1 1 1 1

Put otherwise:

= + +S m 2.5((M m )/ ) 2 ((M m )/ )MAD 1 1 1 1 1 (6)

Since α < 0.75, then 2.5-2α > 1 and SMAD > M1

When the MAD threshold separates the two modes, α thus lies be-
tween 0.5 and 0.75.

Should the result of Eq. (6) be less than m2: this condition assumes
however that anomalies account for over 25% of the population, which
is only really consistent if the anomalies are being oversampled relative
to the background.

Combining two uniform distributions reveals the constraints ne-
cessary for the threshold to be consistent with the presumed limit of the
geochemical background. It is obvious that these restrictive conditions
could in practice go unverified (in assuming that the data correspond to
a mixing of uniform distribution).

The outcome of an algorithm does not necessarily correspond to the
concept being targeted.

3.1.2.2. Combination of two log-normal distributions. Let's examine the
combination of two log-normal distributions with respective means of 1
and 10 and standard deviations of 1 and 1.5. Simulations are used to
verify if the thresholds can separate the two modes, testing the α
proportions of background data in the combination (95%, 80%, 70%
and 50%).

A random sample of 3000 data points is then generated using this
combination, with the thresholds being calculated and depicted gra-
phically (Fig. 3).

These results are similar to those obtained for the combination of
uniform distributions. The background data proportion α serves as the
main parameter defining the consistency of the threshold result with
respect to the definition of the pedo-geochemical background.

3.1.3. Discussion
First, the data distribution does influence the order of the thresholds

calculated with the three tested statistical algorithms, as the lowest and
highest values of the three thresholds depends of the distribution.
Second, the results show that the algorithms cannot always separate
background and anomalies (cf. definition of the geochemical back-
ground). This finding demonstrates that a single statistical criterion,
independent of the context, has little chance of yielding the expected
result (separating the anomalies from the pedo-geochemical back-
ground). On any given polluted site, the “background” dataset may be
much smaller than that of the “anomalies”; the same can occur even
with surveys using a regular mesh. This outcome may also hold for a
district with an extensive industrial past, where the various manu-
facturing sites containing polluted soils would actually cover a majority
of the territory. The notion of background thus clearly depends on the
working scale. The study zone must be large enough for the “anoma-
lies” to remain more confined than what is considered as the local
“background”. In some cases nevertheless, e.g. smelter with impact on a
large area, the anomalies at a given scale become a background at a
smaller scale. It is preferable therefore to infuse knowledge (notably a
historical record) of the medium to understand the variations or even to
delimit the study zone. In the case of data derived from an irregular
pattern or a preferential sampling protocol, it also becomes necessary to
account for sampling irregularities. However this is not always suffi-
cient, especially when the preferential survey fails to adequately sample
the low-value mode. These results show the absolute necessity of first
exploring the data, verifying their “representativeness” and accuracy
for a geochemical background calculation. To achieve this, at least data
distribution must be checked and interpreted.

3.2. Influence of the number of samples and limit of quantification

Let's now examine the sensitivity of these three thresholds to the
dataset size and the limit of quantification. This study is performed by
simulation of a lognormal distribution with mean 1 and standard de-
viation 2.5 (through an empirical computation on the drawings).

Fig. 2. Combination of two uniform laws, with two disjointed modes featuring minimam1 andm2 and maximaM1 andM2, and with a proportion of the first mode α
used in the mixing.
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3.2.1. Influence of the dataset size
To assess the influence of the number of data, the thresholds are

computed over increasing datasets, with 20, 30, 50, 100, 200, 300, 500,
750, and 1000 data points. The computations are then repeated 1000
times, and the minimum and maximum results for each sample sub-
group are depicted graphically in order to show the fluctuation am-
plitude.

Uncertainty is quantified by the deviation between the calculated
maximum and minimum for each of the three algorithms, on all 1000
simulation iterations. Uncertainty thus represents the fluctuation am-
plitude for the computed threshold values. The results of this step (see
Fig. 4) obviously demonstrate a reduction in fluctuations as the number
of data points increases.

For each of the three thresholds, uncertainty quickly drops until
reaching 100 samples; it then continues to decline more gradually, in
stabilizing beyond 200 samples for the MAD threshold and 500 for the
other two. As noted above, the MAD threshold appears to be the most
conservative.

Computing thresholds on the basis of an overly small dataset size
(i.e. fewer than 30 data points) must clearly be avoided. The excessively
unstable result would vary with the introduction of additional data.
Nonetheless, this scenario remains quite common in environmental
studies, which are hard-pressed to produce such a volume of data. The
MAD threshold however appears to display the smallest fluctuation
amplitude and would thus be the best option under the hypothesis of a
computation using a small-sized dataset. The value output must only be
considered as a conventional criterium and used for purely informa-
tional purposes given the high level of associated uncertainty.

3.2.2. Influence of the limit of quantification (LQ)
The influence of the limit of quantification is assessed using the

same set of simulations, but this time by varying the LQ. The data lying
below this limit are assumed to be non-quantifiable by means of ana-
lytical techniques. The proportion of data less than the limit of quan-
tification is obtained by setting the limit of quantification as the in-
creasing percentiles of the empirical distribution, the values being set to
either the LQ or 0.

Fig. 5 shows the simulation results obtained by increasing the limit
of quantification, and thus the number of data lying below this limit.

As long as the limit of quantification remains below the Q95 per-
centile, the S95 threshold remains independent of the replacement
value: 0, LQ/2 or LQ. This same relationship holds for Q90 and the S90
threshold, with a proportion below 90%.

The MAD and upper whisker thresholds are, for one thing, in-
sensitive to LQ at percentages respectively< 20% and 25% of data
lying below the LQ. At higher percentages, these thresholds drop. The
MAD threshold decreases all the way to 50% while the upper whisker
reaches 75%. These declines result from the distance term in the two
threshold expressions, which fall all the way to zero for the afore-
mentioned percentages (Fig. 6). Once these percentage levels have been
exceeded, the thresholds are reassigned to the LQ value and thus not
depicted in Fig. 5.

In the case of replacing data lying below the LQ by 0, it can once
again be observed that the 95th centile is not being affected as long as
the proportion of values lying below the LQ remains< 95%.
Afterwards, it falls to 0. In the same way, the S90 threshold, will fall to
0 once 90% of values are positioned below the LQ. The behavior of the
MAD and upper whisker thresholds is less homogeneous than before;
the thresholds are notably no longer affected until 20% of data drop

Fig. 3. Calculated thresholds for the three algorithms (MAD, Whisker, Percentile 95) with different proportions “α” of background data (Sauvaget, 2019).
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under the LQ. Next, observed thresholds are rising, more quickly for the
upper whisker and more slowly for the MAD. This increase can be ex-
plained by the distance term of these thresholds, which takes into ac-
count the deviation between the replacement value (0 in this case) and
the LQ value, hence expanding the distance between LQ and replace-
ment value. Subsequently, the upper whisker displays stability between
30% and 70%, as explained by the fact that both the 1st quartile (0) and
3rd quartile values do not vary. A lowering of the thresholds can then
be observed, rather quickly for the whisker and more slowly for MAD,
with both reaching 0, at 75% for the whisker and 50% for MAD, re-
spectively. These results remain valid to all cases of substitution by a
value less than LQ, e.g. LQ/2, as it is frequently encountered in geo-
chemistry.

The proportion of data lying below the limit of quantification and
the substitution value therefore influence the computed thresholds.
Even though the choice of substitution by 0 does seem to be more
conservative (by virtue of lowering the values), the influence of dis-
tances (MAD and interquartile distance) in the MAD and upper whisker
thresholds must also be taken into account.

Moreover, in the case most of the data are lower than LQ, all three
thresholds correspond to the substitution value. These percentages
equal respectively: 50% for the MAD method, 75% for the upper
whisker, 90% for the 90th centile, and 95% for the 95th percentile. In
case of a majority of data lower than LQ, it is only possible to mention
the background threshold is lower than LQ, indicating though the value
of LQ.

3.2.3. Discussion
These results reveal the importance of taking into account the

number of data and the limits of quantification when establishing
geochemical background values. The dataset size is a highly restrictive
parameter since a small number of samples induces great uncertainty
on the computed thresholds (high fluctuation amplitude). The majority
of urban studies are confronted with difficult and costly sampling
procedures and, quite often, cannot guarantee a sufficient number of
data (> 30). It is therefore advised to accompany the computed
thresholds with the actual dataset size so that the relevance of these
thresholds can be evaluated by the reader. However in the cases of

Fig. 4. Influence of the number of data points on the computed threshold. Minimum and maximum results of threshold computations for 1000 iterations on an
increasing dataset. Red: Q95, Green: Upper whisker, Blue: MAD threshold. The simulated data histogram has been indicated on the y-axis. Log-normal case
(average = 1, standard deviation = 2.5) (Sauvaget, 2019). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Influence of the limit of quantification. Minimum and maximum values of the threshold computations on 1000 iterations, in increasing the limit of quan-
tification (LQ) and thus the proportion of samples lying below the LQ Replacement of the values lower than LQ by LQ (left) and by 0 (right). Red: Q95, Green: Upper
whisker, Blue: MAD threshold MAD. The simulated data histogram has been provided on the y-axis. Log-normal case (mean = 1, standard deviation = 2.5). On the
left, result equals to the LQ are not represented (Sauvaget, 2019). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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strongly homogeneous soils, and if this can be proved, less data could
be used (e.g. 20).

Many geochemical parameters are subject to censoring from a sta-
tistical standpoint (i.e. data lying below the limit of quantification), as
it was demonstrated above that such data heavily influence the com-
puted thresholds. It then becomes important to take into account the
percentage of censored values in order to make the threshold compu-
tation criterion relevant. Lastly, the substitution value of disqualified
data must be examined; with the aim of avoiding an overestimation of
the thresholds computed when using the MAD or upper whisker
methods, it is highly advised to select the LQ value as the substitution
value. Furthermore, analytical techniques with low quantification
limits are needed.

3.3. Influence of the spatial heterogeneity of sampling

Application to a practical case will expose the influence of a pre-
ferential, hence heterogeneous, sampling schema. The case study used
herein is the Nantes district described in Part 2.

The three algorithms are first be applied without taking into account
data location (Fig. 7) on the whole dataset. The MAD threshold yields
the most conservative results. Results from all three algorithms are
consistent with this urban environment through pronounced enrich-
ment regarding arsenic, copper, lead or zinc, as influenced by anthro-
pogenic activity. The lower natural geochemical background thresholds
of the zone apply to barium, chromium or nickel (of geogenic origin
here).

For a second calculation, the data are weighted in order to correct
the irregular sampling density, which in this case has been designed to
study anomalies and thus tends to oversample the zone of potential
anomalies. The sampling is not only irregular, but also preferential. The
data are weighted by the inverse of the number of samples present in a
square mesh 25 m or 100 m to a side. This weighting reduces the in-
fluence of tightly bound samples. According to the initial result (Fig. 8),
regardless of sample weighting, the threshold order remains un-
changed, the MAD threshold being the most conservative. Next to be
noticed is an increase in computed thresholds the bigger the mesh used
for weighting. From the histograms presented in Fig. 9, this relationship
is explained by a greater proportion of higher values after weighting.
This rise is due to the large number of low values in the dataset lying
within geographic proximity, a condition that lessens their influence on

the weighting. The greater proportion of high values in the weighted
data exerts an influence on the percentiles, which in turn raise the
computed threshold values. Moreover, the MAD threshold, which is
reliant on the median and nearby values, would appear to be relatively
insensitive to the weighting.

In this case therefore, sample weighting depending on geographic
proximity, increases the computed thresholds, with the effect of lim-
iting the influence of data located nearby and better incorporating the
zone's actual geochemistry. Moreover, threshold underestimation in the
non-weighting case in actuality reduces the possibilities for reusing
excavated soils.

3.4. Taking into account the determinants of urban geochemistry

Urban geochemistry is the result of various determinants (Le Guern,
2017) acting at different levels and scales. Such determinants may
pertain to soil and subsoil type (geological data, 583 pedological data)
or depend on current or past land use. To better understand urban
geochemistry and hence the urban geochemical background, it may
prove worthwhile to take these determinants into account as co-vari-
ables. For this purpose, a typology of anthropogenic deposits was de-
veloped by Le Guern et al., 2016) according to their geochemical spe-
cificities. Samples were thus classified according to the following
typology of materials composing the soils and adjacent subsoils: natural
like anthropogenic deposits (sandy) with a low intrinsic potential of
contamination, various or miscellaneous anthropogenic deposits (in-
cluding demolition waste) with a medium intrinsic potential of con-
tamination, questionable anthropogenic deposits (including e.g. slags
or bottom ash) with a high intrinsic potential of contamination, and
alluvial deposits. Results are shown in Fig. 10.

Higher thresholds are found in barium, chromium and nickel in the
alluvia than in the made-grounds, indicating these elements' geogenic
origin. It is the contrary for the thresholds calculated for lead, copper
and zinc revealing an anthropogenic origin. Lower thresholds are
however detected in the natural type made-grounds than in the alluvia,
as explained by the specific type of this fill, composed of Loire sand
graded when laid and exhibiting fewer fine particles than alluvia.
Including descriptive data then makes it possible to dissociate typolo-
gies of soils featuring distinct geochemical properties, hence displaying
different geochemical backgrounds.

In contrast, incorporating such descriptive data would herein

Fig. 6. Influence of the percentage of values lying
below the LQ. Empirical minimum and maximum
computed thresholds for the interquartile distance
(green) and MAD term (blue) on 1000 iterations, in
considering a portion of samples lying below the
rising limit of quantification and a replacement of
values rejected by the LQ (Sauvaget, 2019). (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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segment the data into subgroups. This division thus decreases the
number of samples per group that are used to compute the thresholds,
with the consequences noted above. There is a need to find a balance
when introducing descriptive data so as to build coherent geochemical
areas of sufficient size, which is a not so easy due to urban soil het-
erogeneity. In addition, the descriptive data is likely to provide geo-
chemically homogeneous areas thus allowing the use of statistical
thresholds with fewer samples, as seen in the previous discussion
(3.2.3).

3.5. Discussion: contributions and limitations of the typical statistical
computation methods

The use of statistical thresholds to determine the geochemical
background requires taking into account the various parameters cap-
able of influencing the result. A preliminary study of the data, notably
sample locations, number, share of non-quantified data along with the
covariables describing the medium, is thus necessary. The choice of
threshold computation algorithm must be adapted to meet the objective
of determining the geochemical background, as well as to the sampling
protocol employed (both strategy and mode) and to the data collected.

By definition, the 95th centile considers that the background re-
presents 95% of the data, which corresponds in fact to assigning a
margin of error for a sampling protocol dedicated to determining the
geochemical background. For example, this step relies on the type of
sampling introduced by BGS to produce the G-Base (https://www.bgs.
ac.uk/gbase/home.html). Moreover, its insensitivity to values lying

below the limit of quantification can yield an initial approach in the
specific case of considerable data disqualification (i.e. lying below the
LQ). Similarly, the 90th percentile remains a special milestone, re-
gardless of the data distribution. While the margin of error may be
greater (10% for Q90 compared to 5% for Q95), it nonetheless remains
purely arbitrary and potentially insufficient in the case of data acquired
for purposes other than determining the geochemical background,
wherein the proportion of anomalies may actually exceed these per-
centages. Such a case thus overestimates the geochemical background.

The upper whisker highlights the anomaly rate of up to 25% of the
dataset. This percentage corresponds more to a non-dedicated sampling
protocol in zones only lightly (in retaining a sizable margin of error).
This method therefore is quite consistent with the samplings conducted
within the scope of the Soil Quality Measurement Network (RMQS) or
the Finnish geochemical background program (Jarva et al., 2010). Its
use in urban studies that reuse unacquired data available for this pur-
pose is not recommended, despite their utility for an initial preview,
over raw data. In contrast, it may prove to be a relevant method for use
on sorted data (elimination of obvious anomalies) (Le Guern et al.,
2016). Moreover, the limit of quantification is to be assessed by virtue
of the threshold sensitivity as of 25% of data lying below the LQ. Re-
placing data by a value less than the limit of quantification is to be
avoided due to the influence exerted on the interquartile distance. Such
a replacement would lead in some cases to a background over-
estimation.

The MAD threshold can differentiate background from anomaly, up
to under certain conditions 50% anomalies. This capability integrates

Fig. 7. Results of threshold computations on case study samples for the three methods on whole dataset- Green: Natural geochemical background values (calculated
on deep alluvial deposits on the same district) (Sauvaget, 2019). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. Thresholds calculated on the case study samples for the three methods: without weighting (black), weighting using the inverse of the number of samples in the
meshes either 25 m (grey) or 100 m (white) to a side. Contents of lead, copper and zinc, expressed in mg/kg of DM.
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data stemming from sampling campaigns dedicated to contaminated
sites, including pollution diagnoses. It thus provides an attractive so-
lution for optimizing the use of these data. Since the computed
thresholds are relatively low (compared to the other thresholds), it
tends to suit a conservative approach to the detriment of reusing ex-
cavated earth. Just like the upper whisker, it is somewhat sensitive to
the data lying below the limit of quantification (beyond 20% dis-
qualified data), and the replacement value must not lie below this limit
to ensure the background has not been overestimated.

The choice among these statistical methods thus relies in part on a
dual evaluation of the proportion of anomalies and of the background,
which in turn depends on the properties of soils being studied and type
of sampling protocol implemented. In this sense, our conclusions are
similar to those of Reimann et al. (2005). It demonstrates that for a
small proportion of anomalies, the upper whisker can provide adequate
threshold values. On the other hand, just as we have also presented, a
relatively large proportion of anomalies can only be separated by the
MAD threshold.

In the case study cited herein, the vast majority of our data stems
from samplings dedicated to the potentially polluted zones, which of-
fers the advantage of better localizing and identifying the anomalies.
This being the main divergence from the previous work on the subject
(Birke and Rauch, 1997; Cave et al., 2012; Jarva et al., 2010; Reimann
et al., 2005; Reimann and de Caritat, 2017) with taking into account the
depth and the made-grounds. However, the fact that data are less re-
presentative of the geochemical background for the entire study zone
must also be taken into account. While a complete and specific sam-
pling, either random or systematic, dedicated to the geochemical
background is not currently feasible in France at the moment, it may be

carried out for a handful of samples as a data collection complement
(e.g. a random, geographically-stratified sampling). This effort would
serve to guarantee an enhanced representativeness of the sectors sam-
pled less (yet excluding zones with a strong anomaly potential, like
derelict industrial land).

Moreover, the notion of anomaly varies depending on the working
scale. As such, an industrial zone may appear to be an anomaly at the
scale of a city while included in the background at the scale of a district.
Similarly, a former heavily industrialized region constitutes an anomaly
at the scale of a country yet part of the background at the metropolitan
scale. Such a dichotomy entails a spatial aspect to the anomaly,
whereby the anomaly is correlated with the scope of the study zone.
Only those phenomena covering a limited surface area (i.e.< 25% of
the zone) may be considered as anomalies. The sampling protocol may
influence (through over- or underrepresentation) this relationship in
the final data.

4. Conclusion

The use of typical statistical methods (MAD, higher percentile Q90
or Q95, upper whisker) for determining a geochemical background
threshold value apply the hypothesis that processed data correspond in
the vast majority of instances to the geochemical background and only
for a small proportion to anomalies. As for datasets non-dedicated to
the background, this hypothesis has still yet to be verified, depending
on the working scale and type of sampling employed. In this context,
the first step to computing a value for an anthropogenic geochemical
background consists therefore of verifying both the spatial representa-
tiveness and distribution of this dataset. In cases where the data

Fig. 9. Histograms of the concentrations in copper, lead and zinc, expressed in mg/kg of DM, with or without weighting by the inverse of the number of samples in a
mesh measuring 100 m to a side.

Fig. 10. Thresholds calculated on the case study samples for both the upper whisker and 90th centile methods, relative to the made-ground typology defined in Le
Guern et al. (2016). Green marking: Natural geochemical background values (calculated on alluvial samples from a natural zone upstream), black squares: thresholds
calculated on all samples, 3D view of the geological model of the district, including the typology employed (modified from Le Guern et al., 2016).
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representativeness cannot be guaranteed (e.g.< 15 non-anomalous
data points, overly reduced sampling zone), it would be impossible to
compute the threshold values.

The mapping of geochemically homogeneous or consistent zones
may help evaluate the representativeness of non-dedicated data (e.g.
background sampling, overestimation of anomalies) and select, if need
be, data that are representative of the geochemical background. For
data representative of the zone, the computed threshold values must be
accompanied by the dataset size and coverage of the particular zone. In
the case of limited data (< 30 samples), it is advised to emphasize the
non-binding nature of these threshold values and their inherent un-
certainty and to testify the homogeneity of the soils.

The choice of computational method also depends on the objectives
associated with the threshold determination. In the case of urban soil
data that may have relatively many anomalous values, the MAD
threshold will be preferred for reasons of environmental protection
since it yields lower thresholds than the other algorithms. On the other
hand, the upper whisker provides higher thresholds, which are more
oriented toward economic goals by generating reuse opportunities from
a greater volume of excavated soil.

Lastly, purely statistical criteria fail to account for the data location,
which appears to be essential for the determination of the geochemical
background that may vary spatially due to various determinants of
urban soils geochemistry. A spatial approach, along with geostatistics,

should facilitate the detection of anomalous data and allow mapping
the geochemical background. Indeed, the background component can
be better isolated from the “anomalies” when considering the scale of
the spatial variability of the concentrations.
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Appendix A. General case of the uniform distribution

In the case of a uniform distribution on [Zmin, Zmax], the expression of a percentile is:

=Q (z Zmin)/(Zmax Zmin)z

This expression then yields the following expression of S95:

=
= +

S Q
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In the case of the upper whisker:
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For SMAD, since the uniform distribution is symmetrical:
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