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Trigonometric Kriging: A New Method for Removing the Diurnal
Variation From Geomagnetic Data
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In order to remove the effect of the diumal fluctuation of the magnetic field from magnetic measurements
recorded at sea, we propose a new method: trigonometric kriging. This method is a particular case of the
classical kriging method, but in this case we estimate locally a drift function of the form
D(tj) = Aj cos (o4;) + Bj sin (@¢;) or a truncated Fourier series, using a kriging neighborhood both in
time and space. This method does not require any crossing point, which is a major advantage
over previously published methods. After presenting the theoretical basis, we show how to put it into
practice, i.e., how to choose, both in space and time, the set of points used for the estimation (kriging
neighborhood) and how to determine. experimentally the model for the generalized covariance which was
used in the estimation. Trigonometric kriging has some interesting properties, such as to be exact at track
crossings (if any), to allow an only "almost” periodic drift to be estimated, and finally to make possible
filtering and gridding in one operation. Trigonometric kriging has been applied successfully to several
sets of geomagnetic data recorded at sea near the equator, and we show two actual examples in Peru and in

Indonesia.

INTRODUCTION

The geomagnetic field depends not only on internal causes
but also on external effects such as the effect of solar wind on
the layer E of the ionosphere, creating diurnal (or solar quiet
day) variation due to the rotation of the Earth (24-hour period),
and solar storms. This variation, called Sq (for Solar Quiet day)
or Sq(H) variation also possesses an annual variation with its
maximum in local summer, a semiannual variation with
maxima near the equinoxes, a solar cycle variation related to
the intensity of the solar flux [Hibberd, 1985]. Orbiting of the
moon (28-day period) also creates variations due to the tidal
forces acting on the jonosphere. Another minor source of
variation, with a 27-day period, is due to the rotation of the
Sun. Practically, only diurnal variations are to be removed from
the geomagnetic anomalies, especially near the magnetic dip
equator, where the variation is magnified and can reach 200 nT
peak-to-peak [Smith, 1967]. Figure 1 shows the location of the
magnelic dip equator and a plot of the horizontal component of
the variation versus latitude. This plot clearly shows peak
variations in excess of 200 nT in the equatorial region.
Consequently, no analysis of magnetic data in equatorial
tegions should fail to consider the effects of diurnal variations
[Handschumacher, 1976]. Moreover, oceanic magnetic
anomalies are weaker near the equator, so that the S§/N ratio
(oceanic anomalies/diurnal variations) becomes very low and
generally makes the data impossible to contour and difficult to
interpret. One possible solution to this problem is to have a
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reference station either at sea or on land, where the
geomagnetic field is measured. However, this is not always
possible, and, in the case of an on-land observatory, the
station may be too far from the survey area, resulting in wrong
estimates of the diurnal variations. An illustration is given in
figure 2, where the top plot is the diurnal variation recorded at
the Huancayo observatory (Peru). These data show a typical 24-
hour periodic variation. Maximum values are -100 and +110
nT. However, variations in amplitude, shifts in frequency as
well as higher frequency variations exist. The bottom plot
shows the magnetic anomalies recorded during the same period
during SEAPERC cruise off Peru [Pautot et al., 1986; Huchon
and Bourgois, 1990], about 600 km away from the
observatory. Maximum values range from -250 to 120 nT.

In this paper we propose a new method, trigonometric
kriging (TK), to extract the diurnal variation from the recorded
data, needing neither a reference station nor track crossings.
For this reason, our method completely differs from the
previous methods which all need information at cross tracks. In
addition to simple methods such as the weighted linear
interpolation proposed by Mittal [1984], which does not really
consider the diurnal variation, there are two main approaches to
estimate the diurnal variation. In the first set of papers a
continuous function is computed in order to minimize cross-
track differences using a least squares or regression analysis.
Yarger et al. [1978] use a polynomial power series while Sander
and Mrazek [1982] model the diurnal variation by a Fourier
series. In the second approach proposed by Cloutier [1981] and
developed by Cloutier [1983] and Ray [1985], a discrete,.
nonparametric solution is sought, which is then fitted to a
continuous function. Once again, all these methods use only
information at cross tracks, opposite to the method we
propose.
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Fig. 1. (Left) Location of the magnetic dip equator. S, K are locations of the SEAPERC and KRAKATAU cruises,
respectively. (Right) Peak-to-peak diumal variation as a function of latitude at the longitude of Peru [from Handschumacher,
1976].
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Fig. 2. (Top) Diurnal variation recorded at the Huancayo observatory (latitude 12°5'S, longitude 75°10'W, altitude 3300 m)
from July 22 to July 28, 1986. Abscissa is time in hours starting at 0000 UT on July 22. (Bottom) Magnetic anomaly data
recorded over the Mendana area during the SEAPERC cruise (see Figure 3) as a function of time.

We first present the theoretical background of TK and how to
put it into practice. Then we discuss some interesting
properties of TK and compare it to other methods.
Trigonometric kriging has been successfully applied to
magnetic data recorded during the SEAPERC and KRAKATAU
cruises of the French R/V Jean Charcot in 1985 and 1986.
These cruises were located off Peru and off Sunda Strait
(Indonesia), near the equator. Due to the low values of the
magnetic anomalies and to significant diurnal variations, the
data were difficult to contour and to interpret before correction.

Since observatory data were available at the time of the cruises,
we were able to check the results by comparison with the actual
diurnal variation.

TRIGONOMETRIC KRIGING THEORY

Introduction

This new methed is based on the theory of intrinsic random
functions of order & (IRF-k) which was developed by Matheron
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[1973] (see Appendix 1). Trigonometric kriging is a particular
case of the more general kriging method and was first
developed for a time signal [Séguret, 1987a] before being
successfully extended to the space-time domain [Séguret,
1989]. At the outset, geostatistics was basically concerned
with mining geology problems. However, it was gradually used
to solve problems of modeling, estimation and simulation of
natural phenomena in such varied fields as petroleum geology,
pollution, meteorology, oceanography and more recently
marine geophysics. Its formalism is based on identifying data
to random functions (RF) [Matheron, 1965, 1971].

Objectives of the Trigonometric Kriging

Let Z(x, r) be the RF representing the magnetic anomaly
recorded at sea, where X is a vector of coordinates in space
(latitude and longitude) and ¢ is time. We want to split it up into
a spatial and a time component:

Z (x, 1) = ¥(x) + D(1) (1)

where ¥(x) is an IRF-k in space, independant of time and D(f)
the RF in time which represents the unknown diurnal variation.
The problem is thus to estimate a component of a global
variable. It applies to the dichotomy (1) for geomagnetic data,
but also to the decomposition (in space) into superficial and
deep anomalies in gravimetry and magnetism [Chiles and
Guillen, 1984]. Geostatistics offer a solution to the problem:
factorial kriging analysis. Moreover, it has been shown
theoretically that factorial kriging analysis can be a subsitute
to spectral analysis [Matheron, 1982], two methods which
have been compared in practice [Galli, 1984; Chiles and
Guillen, 1984]. The theoretical equivalence does not imply
identical results, since the methodology differs. Any spectral
analysis needs regularly spaced data and so depends on the
preliminary gridding technique. Moreover, the spectral
analysis proceeds globally on the scale of the complete
measurement field, whereas kriging analysis, because of its
moving neighborhood (see below), only requires the
hypothesis of local stationarity in order to be operational.

The crucial problem is now to use an a priori model of the
diurnal variation which is both based on the natural situation
and is easy to handle mathematically. As D(¢) is only almost
periodic in so far as its amplitude and its phase vary in time
(and space at large scale), we set

D)=Acos (@) +Bsin(w?) (2)

where A, B and @ are random but locally stationary at our scale
of estimation (the so-called kriging neighborhood). To say
that ¥(x) is an IRF-k does no harm in most cases in so far as
the degree of regularity of the RF can be as high as we want (see
Appendix 1).

Formalizing the Problem

Following the methodology given in classical geostatistics,
we decide to estimate the function D(f) at each measurement
point Z(x, ) of the magnetic anomaly, using a linear estimator
of the form:

D*®)= Y ro Z(xq. ta) 3)

o
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where { Z(Xq, tg) } is the set of measurement points which we
want to use for the estimation. It constitutes the so-called
kriging neighborhood, which is both a spatial and time
neighborhood. In practice, when considering spatial
estimations, it is customary to take points in the immediate
spatial neighborhood of x if the estimation is to be done of
Z(x). Later, we shall see that in our particular case we had to
alter this practice in order to perform sampling in time also. In
expression (3), the Ag, coefficients represent the unknowns of
our problem.

As usual in geostatistics, the estimator D*(f) should satisfy
the nonbias condition and minimize the variance of the error
committed when we replace the (unknown) reality D(f) by its
estimator D*(f), that is to say,

E[D@)-D¥*@®)] =0 4)
Var [D(z) - D*(1)] min )

where the expressions E [ ] and Var [ ] represent the
mathematical expectation and variance, respectively. The
significance of the constraint (4) is that we wish to get a
succession of estimations D(¢;) which are lying on the same
reference level. Expression (5) represents a quality criterium of
the estimation, the notion of variance being a distance in the
Hilbert space of the RF D(t), a distance which it would be
reasonable to minimize.

Setting Up the Equations

In what follows we shall pay particular attention to defining
a certain number of constraints on the unknown coefficients Ag
in order to be able to express and minimize the variance of error
(5) while respecting the non-bias condition (4). Combining
expressions (1), (2) and (3), the error of estimation is written

D(t) - D*(t) = A cos (® £) + B sin (0 1)
Y [ (Y(xa) + D(ta) ) ]

oL
=A[cos(wi)- z Ao cos (@ig) ]
o
+B [sin (o r)-z Ag, sin (@) - 2 Ao Y(xg) (6)
o o

At this point, the hypothesis of local stationarity of A and B
is used, since we assume that A and B are constant for the set {t}
U (7). In order to eliminate time in expression (6), we impose

2 Ag cos (Og) = cos (oF) 7
o
Y Aq sin (o1g) = sin (w1) (8)
o

Then, the error of estimation (6) becomes
D@ -D*®)=- Y kg ¥(xq) ©)
o

Practically, constraints (7) and (8) consist in fitting cosine
and sine functions to the time trend of Z(x, 1).
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But these constraints (7) and (8) are not sufficient in order to
obtain an expression of Var [D(f) - D*(t)]. As a matter of fact,
Y(x) is an IRF-k and we also have to impose [Matheron,
1972a, 1973]

Y AafLxa)=0 foreachL<k (10)

04

where f7,(x) are monomials of degree L < k (note that L is a
condensed notation: in one dimension, fT,(x) = xL, but in two
dimensions it is more complex as there are (k+1)(k+2)/2
monomials).

Let us call K(k) the generalized covariance [Matheron,
1972b, 1973] (see Appendix 1) associated with Y(x). If we
enforce the set {Ag ) to verify (10), expression (9) becomes
such as

E[- D Aa Y(xo) 1= 0 an

o
Varl- 3 Ao Yxa) 1= ) Ao >, A Kap  (12)
o o B

where K is a short form of K(hgp), where hof = lxa - XB ’
is the euclidian distance between points x¢, and xp. Expression
(11) enables us to ensure the nonbias and (12) to obtain an
expression of the variance of the error of estimation that we
know how to minimize under the constraints (7), (8) and (10),
by using Lagrange formalism. In this way, we obtain the
following system

2 Ao Kop - mp' cos (fp) - m2' sin (o0ip)

o
- Z ML fL(xB) =0 for each (13a)
L
Y A fL(xe) = O for each L < k (13b)
o
Z Ag cos (@fg) = cos (o) (13¢)
o
Z Ag sin (fg) = sin (1) (13d)
a
Or in simplified matrix notation
Kaﬁ JL(Xq) cos (®tg) sin (o) Aot
fL(XB) 0 0 0 ur
cos (mq}) 0 0 0 pt'
sin (o1p) 0 0 0 ua'
0
0
cos (wr) (14)
sin (o)

The Aq, coefficients represent the unknown solution of the
system, and the py, coefficients the Lagrange multipliers. If P is
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the number of points in the kriging neighborhood and k the
degree of the IRF, Kqp is a PxP matrix, ff,(x) a PxK matrix
(with K = k+1 in one dimension and X = (k+1)(k+2)/2 in two
dimensions), and cos (wig), sin (wig), cos (wep), and sin (wig)
are P vectors. [L1', u2', cos (@¢), and sin (@f) are real values.
Then the size of the matrix is (P+K+2)2. See Appendix 1
conceming the conditions of regularity of this matrix.

PUTTING TRIGONOMETRIC KRIGING INTO PRACTICE

Putting this method into practice is facilitated by using the
BLUEPACK software [Renard, 1986], in a configuration which
is quite unusual, in so far as trigonometric functions are used as
well as the customary polynomials. In this way, by using the
methodology as defined by Matheron [1972a, b], determining
the degree k of the IRF-k and the statistical inference of the
generalized covariance K(h) presents no problem. The only
constraint is to impose the trigonometric functions as well as
the usual monomials f7, when recognizing the structure
automatically.

Consequently, we are able to solve the TK system (14). The
only remaining problem is that of choosing the set of
measurements { Z(X¢q, Ig) } which will be used for the
estimation.

The Kriging Neighborhood: Global or Moving Neighborhood

The problem is to choose a set of measurements { Z(Xex, toy) )
on which we want to apply the TK system (14). In the first
possible case (global neighborhood) we could decide to take all
the measurements in the measurement field, whereas, in the
second case (moving neighborhood) we shall only take some
of them.

As in the case of a marine survey, we often have more than
10,000 points available in a measurement field, choosing a
global neighborhood would imply having to invert a matrix of
about 10,000 x 10,000 elements which is clearly excessive.
We can add another argument in favor of the moving
neighborhood. In fact, if the drift model (2) for the diurnal
variation, where A and B are constant on a small space-time
scale, is locally reasonable, it is, however, too restrictive
globally, since this would require the daily drift D(t) to be
strictly periodic. However, these daily variations have an
amplitude and frequency fluctuating in time at a fixed location
(Figure 2) as well as depending on the space where the
measurements are made. Choosing a moving neighborhood
enables us to make local estimates of A and B or, in other
words, a local estimation of the initial phase of the process.
This series of local estimates gives us a global curve D*(f)
which is not periodic in any way and is quite different from a
trigonometric function.

Another advantage of the moving neighborhood is that we
can make the approximation of a flat Earth when computing the
distances, thus saving computing time. Such an approximation
avoids using spherical coordinates, for which usual covariance
functions are probably not relevant.

The Kriging Neighborhood: Sampling
Taken in Time and Space

As TK is performed in space and time, when setting up the
kriging neighborhood we cannot just take points which are in
the same spatial neighborhood, but we must also consider
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having a good sampling of points in time in order to carry out
the estimation. That is why we shall oblige the neighborhood
to contain sample points lying on several "data segments." A
data segment is a portion of data a few hours long, practically
between 3 and 12 hours depending on the configuration of the
survey. Let us keep in mind that this constraint prevents the TK
system (14) from only containing points coming from the
same geophysical profile. Consequently, in practice the points
in the kriging neighborhood lie on a few data segments so that
it covers at least one period (24 hours) and are those which are
the closest to the point to be estimated. But even there, we
should be careful, for it may happen that two segments which
are spatially close are distant in time by several days. In that
case, mixing two sets of data containing different phases and
amplitudes makes it difficult to adjust a single periodic trend.
Let us remember that when setting up the TK equations we
assumed the coefficients A and B to be locally stationary; here
“locally” means both in space and in time. Consequently, it
would be ideal to enforce the kriging neighborhood points used
to estimate D(f) to be also in a time interval of about 1 or 2
days around ¢.

Let us sum up by saying that putting TK into practice causes
no problems as long as (1) we adopt a moving neighborhood;
(2) the number of neighborhood points is sufficient to ensure
good stability for the estimation (20 points are generally
enough); (3) these points are taken in a spatial-time
neighborhood which is near the location X we want to estimate
and covers a period of 1 or 2 days around t.

Finding the Models

We briefly explain hereafter how we estimate the degree k of
the IRF Y(x) and its generalized covariance K(h). See Renard
[1988] for more details.

Estimating the degree k of the IRF. We divide the studied area
into a large number of data subsets Vg containing the same
number of points (as defined in this paper as the kriging
neighborhood). We search for the degree k of the polynomials
which, together with the trigonometric functions cos (®f) and
sin (@), fits optimally (in the least squares sense) the data
contained in all subsets V. But filtering by least squares
minimization is equivalent to kriging with a covariance reduced
lo the "nugget effect,” i.e., corresponding to uncorrelated data,
or white noise. Doing this with a large number of sets Vg
enables us to elaborate statistics about the best order £ in the
studied area. This first step consists in identifying, at the scale
of the kriging neighborhood V¢, the phenomenon (in space
and time} as a sum of polynomials and trigonometric functions,
1¢., to its trend. In the case of the estimation of the diurnal
variation D(f), we know the main frequency @ of the variation
(24 hours), but we might generalize the method, the problem
being to find the best couple (k, @) that fits the data (in the
least squares sense).

Evaluating the generalized covariance K(h). The previous
'5iep gives us a couple (k, @) which characterizes the space-time
rend of the phenomenon. Now we choose, from a set of
possible models for K(h), the one that gives statistically the
besl results for all the selected sets Vi, previously defined. Such
models of K(A) must fulfill certain conditions (see Appendix 1).
Although the set of possible polynomial generalized
fovariances is infinite, in practice, the BLUEPACK software

es combinations of the four following functions: a dg(h J

(muggett effect), b A (linear), ¢ h? In (h) (spline) and d h
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(cubic). The particularity of these models is that they depend
linearly on coefficients (a,b,c,d) we can first compute, and
second simply test by solving the kriging system for all the
selected sets Vi, where we compare the data value to its
estimation. Then we choose the model which gives
statistically the best results. The practice shows, however, that
the solution of the TK system is relatively insensitive to the
model for K(h).

The estimation of the degree k of the IRF and of the
generalized covariance K(h) are performed automatically in the
BLUEPACK software. Finding k and K(h) using 20,000 data
points clustered in 1,000 sets V requires about 3 min CPU
time on a VAX 11/780 computer.

TRIGONOMETRIC KRIGING PROPERTIES
Trigonometric Kriging Is Exact at Track Crossings

We now consider this question since most of the methods
previously proposed in order to remove the diurnal variation
use only this particular information provided by the misfits at
track crossings. When the ship crosses back over its own route
after several days, we have two measurement points Z(x1, 1)
and Z(x2, t2) which are identical in space (i.e., X2 = X1), but
distant in time of df = t2 - t], which gives a deviation dZ71 that
is due theoretically to the diurnal variation:

dZ1 = Z(x7, 12) - Z(x1, t1) = D(t2) - D(t1) = dD21 (15)

To show that TK is exact at track crossings is equivalent to
demonstrate that

dD21 =D*(12) - D*(11) = dD*21 (16)
where dD*(t) is the estimation of dD(r).
| |
2
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Fig. 3. Tracks chart over the Mendana area during the SEAPERC cruise.
Numbers attached to track crossings refer to Table 1. Solid triangles
delineate the data segments used in the kriging neighborhood search
(see text).
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Fig. 4a. Contoured map of the magnetic anomaly data recorded over the Mendana area.

Suppose that the kriging neighborhood contains, among
other points, a couple of track crossing points Z(x1, £1) and
Z(x2, t2). Suppose that instead of evaluating D(¢;), we want 10
estimate Z(xj, #) itself. Since we use linear estimators, we have
the following property:

Z*(x;, 1) = Y*(x;) + D*(t}) 17)
where Z*(xi, #;), Y*(x{) and D*(t;) are estimators given by the
solution of systems with the same matrix as system (14), but of
course not the same right-hand side. Now since we use a kriging
estimator, we also have a well-known property: kriging is
exact on the data points; then

Zx(x3, 1) = Z(x3, 15) (18)
for each point (X, ;) belonging to the kriging neighborhood.
Since x1 = x7 and because of property (18), we have

dZ*¥9] = Z*(x2, 12) - Z¥(x1, 11) = D*(t2) - D*(11) = dD*31 (19)

dZ*9] = Z*(x3, 17) - Z*(x1, 1) = Z(x2, 12) - Z(x1, 11)

=¥(x2) + D(tp) - Y(x1) - D(t1) = D(t2) - D(t1) = dD21  (20)

Then by identifying (19) and (20), dD91 = dD*71, which means
that TK is exact at track crossings.

In the same way, we could demonstrate that if two points
Z(x1, t1) and Z(x2, t9) are not really identical, the score, as
defined by

Score = dD*31 - dD71 (21)

has the expression

Score="3" B/ (Kj2 - Kj1) + Y €L (fL(x2) -fLx1) 22)

/ L
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Fig. 4b. Contoured map of the magnetic anomaly data of Figure 4a corrected by removing the diurnal variation obtained from

the Huancayo observatory (see Figure 2, top).

where B/ and Cf, are components of the inverse matrix of TK
system (14) multiplied by the data vector Z(x, fg), Kji =
K(|x j - Xi| ) is the value of the generalized covariance along
the distance between x; and x (j, and /7, are the usual monomials.
This expression (22) is proportional to the distance between
the two points x1 and x3.

To summarize, if the kriging neighborhood contains two
points identical or nearly identical in space, the result of the
estimation by TK will fit the cross-track difference.

This ability of TK to be constrained by cross-track
differences can be a quality if the deviation at the crossing
point dZ71 actually corresponds to the fluctuations D(r).
However, this is not always the case, as the following remarks
show: (1) None of the crossing points are really the same and
the distance between them, however small, corresponds to a
difference in magnetic anomaly value which is not necessarily
negligible, especially in areas with large gradient. Therefore
looking for the identity between dD71 (difference due to the

diurnal variation) and dZ31 (observed difference at cross track)
is nothing but a figment of the imagination. (2) Moreover,
underway magnetic measurements are subject to errors of
location. These can be significant. Consequently, two points
which seem located almost at the same place can be quite far
apart. This may cause a strong experimental deviation dZ71
which the diurnal variation D(¢) is unable to explain. Therefore
the estimator D*(¢) will take this deviation into consideration,
whether it is real (due to D(z)) or fictitious (error of location),
even if it means losing its time regularity. This phenomenon
can be clearly seen on the estimated curve D*(1) in the case
studies attached, where we see it literally "explode” toward
extreme values before returning gently toward a periodic
regularity. It might be thought that an estimator which is
nonconditioned by the deviations at the crossing points (even
if less precise) could be preferable, but any method involving
the spatial and time structure of the phenomena under study will
be dependent on these errors.
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Fig. 4c. Contoured map of the magnetic anomaly data of Figure 4a corrected by removing the diumal variation estimated by

trigonometric kriging.

Consequently, for two points which are identical in space,
the estimation will be conditioned by the cross-track difference
which is due to the diurnal fluctuations. This TK property is
interesting a priori since it makes it possible to follow the
fluctuating phenomena D(t) and to filter it. This was the
objective we defined. Consequently, the study of scores as
defined by relation (22) and applied in the two case studies
attached is not a check on the theoretical properties of the
estimator (since in theory the score is null), but rather an
evaluation of the quality with which this method is put into
practice. If we do not want the local estimation at cross points
to be constrained by this property, we only have to impose
that the kriging neighborhood does not contain such a couple
of points.

TK Carries Qut an Implicit Estimation
of the Phase of the Initial Process D(t)

We could have envisaged creating an estimator (linear or not)
based on periodic functions other than cosine and sine, since

the fluctuations D(t) ressemble a truncated trigonometric
function more than a really sinusoidal curve (the amplitude of
D(t) is much smaller at night). We could have also thought of a
roof-shaped function [Séguret, 1987b]. However, we have to
use sine and cosine functions because it allows an implicit
estimation of the phase of the initial process D(}) since

A cos (@) + B sin (0 1) = C cos (@ t+) (23)

If, in practice, the initial phase ¢ does not constitute an
insurmountable unknown (we know that D(f) is generally
maximum at 12:00 local time), the use of another type of
periodic function which starts at this phase ¢ will assume that
this model will follow its periodicity throughout the cruise.
Now it has been seen that D(#) is not strictly periodic.
Therefore the moment will come when this model will be
dephased in relation to reality. As we use a moving kriging
neighborhood, the series of estimations contains implicitly an
estimation of phase, and thus an implicit shift with respect to
the initial phase of the fluctuations D(z). It is precisely this
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TABLE 1. Track Crossing Errors Over the Mendana Area on a choice of points in the kriging neighborhood which would
be grouped in time.
Besides, we have set up trials and practice shows that a

fl 2 o & a5 & system matching a single frequency (if it is of 24 hours) is quite
enough to solve the problem. Even better, the TK system (14)
1 2212 21:12 216 -160 -56 209 -0.7 has been shown to be very stable in relation to the frequency
2 9:18 22:04 -21.0 -21.4 0.4 -323 11.3 : . . .
used, i.e., it makes no difference if we take 23, 24 or 25 hours
3 7:50 16:01 4.0 4.7 -0.7 5.2 -1.2 :
4 9:05 15:05 4.8 5.9 1.1 18.8  -14.0 as our work frequency. The accuracy of this remark depends on a
5 2:40 14:45 29.0 29.3 -0.3 34.0 -5.0 careful choice of the kriging neighborhood.
6 4:27 14:25 9.9 -8.7 -1.2 14.6 -24.5
TK Makes Filtering and Gridding Possible in One Operation
Mean 15.1 1.5 9.4

Interpreting magnetic data often requires maps which
necessitates the intermediate operation of gridding, enabling

Abbreviations are 11, local time on the first profile (hour:minute); I,

local time on the second profile; 4717, observed difference (in nT) in
magnetic anomaly (2-1); dD*, difference estimated by trigonometric
kriging; Er*, residual error (dZ31-dD*); dD°, observed difference in
observatory data; Er°, residual error (dZp1-dD")

property that enables us to estimate and filter a curve D(1)
which is only "almost” periodic.

This being said, if we want to improve the model by taking
another type of periodic function, as each periodic function can
be split into Fourier series and by truncating the series we get a
good approximation with a minimum of frequencies, it is also
possible to ask

N
D(t):ZA; cos (0;t) + B; sin (@;t)

i=1

(24)

and so to incorporate into the TK system 2N constraints of the
type

E Ag cos (@;f) = cos (w;r)
o

(25)

(and same in terms of sine). We then define the following
system:

Kap  fL(xq) cos (0jtg) sin (0;1g) i
cos (w;rg) O 0 0 K1
sin {m;IB) 0 0 0 ua'
0
0
cos (@;f) (26)
sin (@;f)

The size of this matrix is (P+K+2N)2 where P is the number
of points in the kriging neighborhood, K = (k+1)(k+2)/2, k the
degree of the IRF and N the number of frequencies. If the system
(26) is correct in theory, its application may cause problems if
we do not pay attention to the frequencies used in the truncated
Fourier series (24). In fact, in system (26), if two frequencies
©1 and ®7 are too close together (e.g., 23 and 24 hours),
although different, they can make the matrix of (26) singular,
by the quasi identity of the two columns, this being dependent

us to go from data on profile to data estimated at the nodes of a
fixed sized grid. If we choose to use a linear estimator of type
(3) for this gridding, it has been shown [Matheron, 1973] that
kriging is the best possible estimator. Therefore besides the
filtering of the time component D(s), TK makes it possible to
carry out the estimation of the spatial component ¥(x), where
X is located at the node of a grid. For that the following system
must be solved:

Kop JL(Xq) cos (@tg) sin (wig) Aot
fL(xB) 0 0 0 W
cos () 0 0 0 K1
sin (0ig) 0 0 0 H2'
Kox
fLx) @n
0
0

a system which makes it possible to estimate Y(x) by an

estimator Y*(x) of the form Y*(x) = ¥ Aq Z(Xq, fq). Here

o

we no longer estimate D(f) at the measurement points (x;,t;) as
in system (14), but ¥(x) at the nodes x of a grid. From now on,
the system (27) ensures the gridding of Y(x) and the filtering of
D). If this remark is obvious from a theoretical point of view,
it is nonetheless methodologically important owing to the fact
that the filtering is performed simultaneously with gridding, an
operation which will be performed anyway.

TRIGONOMETRIC KRIGING COMPARED TO OTHER METHODS
Trigonometric Kriging Compared to Spectral Analysis

TK includes two methodological approaches: that of kriging
analysis, as far as filtering is concerned and that of kriging in
IRF-k (see Appendix 1). Indeed, the dichotomy (1) of the
observed magnetic anomaly Z(x,!) into two uncorrelated
components D{(f) and ¥(x) is the departure point of the factorial
kriging analysis.

Spectral analysis in space-time domain. Performing three-
dimensional (3-D) Fourier transform in space and time would

require a 3-D regular grid. Since measurements are made

consecutively in time, we would have to extrapolate the data
both in space and in time, which is clearly unreasonable.
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Spectral analysis in time domain only. To solve the problem
of filtering the diurnal variations by working in the time
domain (i.e. considering Z(x, ¢) as a function of time Z(t) only)
and filtering the 24-hour period (theoretical period of D(#)) by
Fourier truncation, involves losing the spatial structural
information in Z(x, t). We applied this method on the data of
the KRAKATAU 85 cruise [Séguret, 1987a]. The filtering was
carried out perfectly, in fact too well carried out, as after the
filtering by Fourier, the resulting signal was only white noise.
The cause for this is that the KRAKATAU cruise was composed
of 12-hour-long profiles which on the curve Z(t) created an
artificial 24-hour period comparable to that created by D(z). So
by filtering the 24-hour period, we also filtered the spatial
signal which was made periodic by the ship's tracks. Only the
spatial microstructures remain after filtering.

Consequently, filtering by Fourier transform in time is
impossible if the profiles have a time-length close to 24, 12, 6
hours. Moreover, it would be a pity to study Z(X, ¢) in time
only and so lose all the spatial structural information.

Spectral analysis in space domain only (1-D). An alternative
to Fourier transform in the time domain is to perform it in the
space domain. This method can be used if the profiles are

100

-100}
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reasonably linear, so that the measurements can be projected
along the mean profile direction and then filtered profile by
profile [Chamot-Rooke, 1988]. Note that such filtering, as is
usual when using Fourier transform, requires us to interpolate
the data in order to perform filtering on regularly spaced data.
In practice, this method gives satisfactory results but requires
careful checking of the part of the signal filtered out by this
procedure. Also, the resulting track-crossing errors have no
reason to be minimized by the procedure.

Spectral analysis in space domain only (2-D). Filtering the
magnetic anomalies in the space domain using 2-D Fourier
transform is inapplicable since it is impossible to detect a time
periodicity in a regionalized signal in the space, unless we
have data on a single profile, which is rarely the case.
Moreover, it would then be easier to use 1-D Fourier filtering
along the profile.

Comparison With Least Squares Minimization
at Track Crossings

As the least squares techniques are not exact on the
deviations at crossing points, this bias gives us a mean

-100F
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Fig. 5. Curves of the daily variation recorded at Huancayo observatory (solid curve) and estimated by trigonometric kriging
(dotted curve). (Top) Using a kriging neighborhood of 20 points lying on 10 different data segments (see text). (Middle)
Same but on seven different data segments. (Bottom) Enlargment of part of the middle curve.
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estimation which is not very precise. This can be very efficient
if we have lots of these points, which is not generally the case.
If such points are numerous, least squares fit of polynomials
[Yarger et al., 1978] or of Fourier series [Sander and Mrazek,
1982] provides a good estimation of the diurnal variation
curve. Using a different approach, Cloutier [1981, 1983]
proposed a method which consists in the estimation of the
unbiased, discrete function of minimum weighted variation
which explains the observed differences at track crossings.
Note that it is close to the constraints (4) and (5) we have used
i TK. However, since the perturbation is estimated only at
track crossings, it requires to fit a continuous function to the
values in order to correct all the data. In other words, it is
applicable if two conditions are satisfied: the number of track
crossings should be large and the perturbation we are looking
for should be as continuous as possible. This technique has
been applied for reducing the radial ephemeris error present in
Seasat geoid height data [Cloutier, 1981], where the conditions
are obviously fulfilled. However, geomagnetic data recorded at
sea generally do not meet these conditions. Moreover, it is
obvious that if an inverse weighting scheme in time is used,
this method would give the same result as obtained from
trigonometric kriging by using track crossing points only.

APPLICATION OF TRIGONOMETRIC KRIGING TO ACTUAL DATA

Two sets of data were used to test TK: about 6,500 measured
values (4 days) during the SEAPERC cruise over the Mendana
area off Peru [Pautot ef al., 1986; Huchon and Bourgois, 1990]
and 14,500 measured values (10 days) during the KRAKATAU
cruise off Sunda Strait (V. Renard, personal communication,
1985). All measurements were collected at a rate of 1 per min.
Analogous records of the geomagnetic field were obtained from
the observatories of Huancayo (Peru) and Jakarta (Indonesia)
and digitized at the same sampling rate of 1 min.

Seaperc Data Results

The magnetic data recorded along the track (Figure 3) are
plotted as a function of time, as well as the diurnal variation
curve recorded at the Huancayo observatory (Figure 2). Note
that this observatory is located about 600 km away from the
survey area. The corresponding contoured map (Figure 4a)
displays an obvious track effect. Looking at the track chart
(Figure 3) and at the data plotted as a function of time (Figure
2), we can see that the ship crossed periodically the same
feature every 6 or 12 hours. An artificial periodicity is thus
introduced into the data by the ship's track pattern. Only six
crosspoints are available in the survey. The average of the
absolute cross-track differences is 15.1 nT (Table 1).

The contoured map obtained using underway magnetic data
comected with the observatory data is shown in Figure 4b. The
comection has removed almost all track effects. However,
cross-track differences are still large with an average value of
94T (Table 1).

The curve estimated by trigonometric kriging follows quite
well the curve recorded at the observatory (Figure 5). This
shows that first the method gives pretty good results; second,
the assumption of stationarity (in space) of the diurnal
wariations is valid (at this latitude) even at distances of several
hndred kilometers.

In order to estimate the influence of the choice of the local
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neighborhood in space (number of data points used) and in time
(number and length of data segments used), we have performed
two different estimations. The first one uses a neighborhood of
20 points on seven different, 6-hour-long data segments
(corresponding to a kriging neighborhood in time of 1.75
days): the estimated curve shows anomalous spikes (Figure 5,
center curve). The second one uses a neighborhood of 20 points
on 10 different data segments (corresponding to a kriging
neighborhood in time of 2.5 days): the spikes have disappeared
and the estimated curve is smoother (Figure 5, top curve). We
interpret this difference as due to the fact that when increasing
the number of data segments, we better sample the signal in
time, thus forcing it to be locally closer to the average period.
This behavior occurs because we do not completely control the
kriging neighborhood in time. In some cases, most of the
points in the kriging neighborhood correspond nearly to the
same local time: then, the signal is not correctly sampled in
time and the estimates are inaccurate, In other cases where the
points in the kriging neighborhood sample at least one period
(24 hours) correctly, the estimate is less erratic and closer to
the observatory curve. On the other hand, if the data are
sampled on a few segments, the spatial neighborhood has a
predominant influence on the estimate. However, we get a
better score at track crossings using fewer segments. From a
practical point of view, we thus have an easy way to adjust the
estimated curve: the more segments we use, the smoother the
curve we obtain. The less segments and the more points we use,
the better we fit the track crossings.

Comparing the contour maps of the data corrected with the
observatory curve (Figure 4b) and with the curve estimated by
TK (Figure 4c), it appears that they are quite similar. The
differences at track crossings using either the data corrected
with the observatory data or the data filtered by TK are shown
in Table 1. To be compared with the mean difference of 15.1 nT
in the uncorrected data, applying the correction given by TK
results in a mean 1.5 nT error. Recalling that in theory TK is
exact at track crossings, it means that (1) the method has been
correctly applied and (2) no serious navigation problems
occurred.

Krakatau Data Results

This example of application is presented here in order to
show how powerful TK is, even in difficult cases such as this
cruise, in which the recorded magnetic anomalies range from 20
to 130 nT while the data from the Jakarta observatory range 75
nT peak-to-peak. The amplitude of the daily variation is thus of
the order of magnitude of the recorded magnetic anomalies.
Together with an average 12-hour length of the profiles in this
systematic survey, it results in being impossible to interpret
the magnetic anomaly, as shown by the contoured map of the
measured values (Figure 6a). In fact this map shows a very
strange pattern because cross-track differences are very large
(often more than 50 nT). This map is to be compared with the
map obtained after removing the daily variation by TK (Figure
6b), which obviously needs no comments.

CONCLUSIONS AND PERSPECTIVES

Trigonometric kriging has many theoretical advantages over
methods for removing the daily variations proposed previously
but above all TK has the main advantage of being applicable
without cross points. This is probably the best argument in
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favor of our method. Moreover, if cross points exist in the
survey, the residual is theoretically null, and practically very
small at these points. '
However, trigonometric kriging has a shortcoming since the
estimated curve D#*(¢) shows small amplitude and high-
frequency variations about the average tendancy. This results
from the hypothesis of local stationarity of the coefficients A
and B in the expression (2) of the drift model D*(z). Doing this,
we do not impose any constraint on the regularity of the curve.
Rather, we estimate a succession of values D*(f) where the
coefficients A and B depend only on the kriging neighborhood,
which we have said to be only partly controlled in time. Thus
this method cannot be applied without carefully checking the
kriging configuration around points where the estimate shows
rapid fluctuations. Other problems when putting the method
into practice include the geometrical configurations which
make the TK system (14) singular, due to the use of
polynomials of low degree. Fortunately, this seldom occurs.
Finally, we must point out that TK is applicable not only to
magnetic data, but also to any kind of information which is
regionalized (in space) and perturbed by an almost periodic drift
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(in time or in space), such as measurements of temperature,
pollution and activity of biota [Séguretr, 1990].

APPENDIX 1: A FEwW ELEMENTS OF IRF-K THEORY
AND ITS APPLICATION

In order to make the reading of the paper easier for those not
acquainted with geostatistics [Matheron, 1965, 1971], we
present in this appendix (1) the theoretical basis for solving
our problem, and (2) the conditions of regularity of the kriging
system.

Aim of the Intrinsic Random Functions of Order k (IRF-k)

Formally, an IRF-k is a set of Random Functions (RF) { Z(x)
} which share two properties: (1) they have the same degree of
regularity (degree k) and (2) they have the same generalized
covariance K(h).

More practically, it means that if we want to compute a
weighted average of the particular RF Z(x) using the relation

s1°

=

$7°30

£104°

o
7N am
E104°30 E105°

Fig. 6a. Contoured map of the magnetic anomaly data recorded during the KRAKATAU cruise.
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@)= Y Aa Z(xg)

a

(A1)

and if we want to obtain an expression of the variance of this
average, we have to use particular sets { Ay } because the
expression (Al) does not have a variance for all { Ag ). except
when Z(x) is stationary. In this case, for any set { Ay }, the
variance of the expression (Al) is

Y A Cov (Za. Zp) (A2)

Var( ) Ao Zxo) )= 3 Aoy
o o p

where Cov ( Zg , Zp ) is usually called the spatial covariance of
Z(x) (in the framework of the signal theory, this function is
generally called autocovariance function). But stationary
phenomena are not so usual.

When dealing with nonstationary phenomena, we solve this
problem of obtaining an expression of the variance of (Al) by
reducing the variability of the estimator Z*(x). For this, we
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decide (in IRF-k theory) to use particular sets { Ao } which
filter out polynomials of degree £, i.e.,

z Ao fL(Xa)=0 L=0,1,. k (in one dimension) (A3)
o

where fj (x) are polynomials of degree k (k may be any positive
integer, but in practice seldom greater than 2). Such a set { Ag }
which satisfies (A3) is called an “"admissible linear
combination of order k" (ALC-k) or admissible weights. We
then expect that under these constraints (A3), the average (Al)
has become a stationary random variable.

The second step is to define a function similar to the
covariance in expression (A2) which, in this case, is called the
generalized covariance K(h). Matheron [1972b] has proved that
such a function exists. Then if the set { Ao } respects the
constraints (A3), the variance of (A1) has the expression

Y, ig DY ApKap (A%

Var[ Y Ag Z(xg) ] =
o o B
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Fig. 6. Contoured map of the magnetic anomaly
trigonometric kriging.

data of Figure 6a, corrected by removing the daily variation estimated by
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where Ko p symbolizes K(lxa -Xp |). Then the "kriging
methodological algorithm" is possible, minimizing (A4) under
the constraints (A3).

To summarize, we can say that the nonstationarity (in a large
sense) of Z(x) implies fitting most part of the phenomena by
polynomials, so as to obtain residuals for which we can
calculate and minimize the variance.

Regularity of the Kriging System
Systems (14), (26), and (27) share a common form:
[A] (A) = (b) (AS)

where [A] is a matrix and (A) and (b) are vectors. This system
must be inversible, so as to obtain the solution:

() = (A1 ) (AS)
This is possible if the two following conditions are fulfilled:

(1) the generalized covariance K(h) must be a strictly positive
conditional definite function, which means that

PRPDIRTY ML
o B

for each set { Ag } of admissible weights

(A7)

Zxa Z Ag Kap = Oimplics { A, } = (0,...0} (A8)
o B

(2) the set { fT.(Xq), cos (®ty), sin (®y) } must not be linear
dependent, which means that if, for any (xq, #g), there exists a
vector of coefficients (Cy, C'1, C'2) so that

Z CLfL(Xq) + C'1 cos (i) + C"2 sin (i) =0 (A9)
L

then Cr,=0foreachL and C'1 =C'2 =0.

More practically, these two conditions imply that (1) we
must use particular models for the generalized covariance K(h)
and (2) we must take care of the geometrical configuration of
the data { Z(xq) } we use for the estimation. For example, if we
use data points located on a straight line in a 2-D space and if
Z(x) is an IRF-1 (of order 1), then systems (14), (26), and (27)
will be singular. Another example: if the spatial part of the
phenomenon is an IRF-0 and if data { Z(xg, 7o) } are sampled
periodically in time with a frequency ® equal to that used in the
system, the system will be also singular.
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