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ABSTRACT

In spatial studies semivariogram values for a small number of distance
classes may be obtained by means of a nested sampling design. Following a
previous paper [Corsten and Stein, subm.], the present paper addresses the
question which estimation procedure one should follow in order to obtain
estimations for semivariogram values in nested designs. Particular attention
is given to Restricted Maximum Likelihood Estimation (REML). It is shown
that REML-estimation performs well as compared to expected mean squares. The
existence only of asymptotic variances ;f the estimates for the variance of
semivariogram values, however, is felt to be a real disadvantage. The study
is illustrated by two designs with artificial data and by one design with
data emerging from soil science. In unbalanced designs, REML estimation may
yield semivariogram values with (only asymptotic) variances of about 70% the

size of the variances obtained by expected mean squares.
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1. INTRODUCTION

" In spatial inventory studies common use is made of nested sampling
plans. In particular, when a pilot study is carried out to get a first
impression of differences in soil and geologic characteristics nested
designs have yielded important results [Burrough, 1986; Oliver and Webster,
1986; Van Dongen and Widianto, in prep.]. The main advantage is that
observation locations have several differing intermediate distances, ranging
from small to large. When no information is available on the scale of
variation of a spatially varying characteristic a nested design may yield
preliminary information. In order to analyse the relation between obser-
vations and the separation distance between their observation locations,
common use is made of semivariograms. Although the semivariogram is a
function of the separation distance between observation locations only in
the absence of a trend, as a first approach it may well serve the purpose.

In [Corsten & Stein, subm.], included in [Stein, 1991], it was proven
that semivariograms for certain distances are equivalent to the cumulative
sum of several variance components each of those belonging to a particular
distance and available from a classical ANOVA procedure. Moreover, the mean
of pair differences to estimate the semivariogram, the so-called intuitive
estimator, is equivalent to values obtained from expected mean squares in
balanced designs, but differences are observed for unbalanced designs. It
has also been shown that in unbalanced designs neither estimation procedure
has uniformly minimum variance: for certain values of the variance compo-
nents in some unbalanced designs the intuitive semivariogram estimator has
smaller variance, in other situations the ANOVA estimator has. However,
serious doubts were cast whether nested sampling schemes must be advocated
as a general procedure to estimate semivariograms, since values for only a
small number of distance classes are obtained.

There are other ways to estimate variance components. Recently maximum
likelihood and restricted maximum likelihood procedures have received much
attentionvin literature [Patterson and Thompson, 1974; Engel, 1991; Dietrich
and Osborne, 1991; Pettitt and McBratney, in press]. In the present study
attention will be given to estimation of the variance components and their

variances to be used for semivariogram estimation in nested designs.
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The main problem we want to deal with in this paper is whether the use
of one estimation method is to be preferred above any other procedure.
Attention will therefore be given to several data sets, of which one emerges
from a practical study.

In Chapter 2 attention will be given to the general description of
nested designs and the relation between variance components obtained from a
classical analysis of variance and estimated semivariogram values. In
Chapter 3 different procedures to estimate variance components in nested
designs will be outlined. In Chapter 4 attention is paid to several
applications. In an appendix special attention is given to the use of

expected mean squares for variance components estimation.

2. NESTED DESIGNS

We will consider observations which are collected in space on a
spatially varying characteristic. One may think of soil properties like the
content of a pollutant, or the thickness of the plough layer, a geological
characteristic like the ore grade or the content of a geochemical mineral, a
meteorological characteristic like the mean annual precipitation, or other
environmental and sociological variables. In many studies such variables
have been treated as regionalized variables (see, for example, [Journel &
Huijbregts, 1978]). On such variables observation are collected, sometimes
following a predetermined sampling scheme, such as the nodes of a triangu-
lar, square or hexagonal grid or the equally spaced points along a transect.

In order to determine the scale of variation which may be helpful to
fix the distance between grid nodes, or points on a transect, in advance, a
pilot study may be carried out using nested designs, for which relatively
little effort is required to obtain observations for several different
distances [Webster, 1985]. Use of analysis of variance may yield the
necessary information to make an assessment of an adequate grid mesh.

As a nested design we consider a design where observations are
collected at several levels of variation with systematically decreasing
distances between them [Gower, 1962]. The prior choice for the levels is
usually given by relevant sources of variation. When, for example,

observations are collected for different areas, within every area for
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different soil types, within different soil types for different land use
types, for different land use types for different parcels, for different
parcels both on the ridge and in the furrow, and each observations is
replicated twice, one obtains a six-level nested design. Distances between
the observations decrease in passing from the most global level to the most
detailed level. A nested design results in a nested classification of the
observations.

In order to formulate the statistical model, consider a vector of
observations y which are collected according to a h stage nested design with
fixed distances 0 = rg < rj < .. < rp among pairs of observations, perhaps
proportional to each other with a common factor. In practical studies
factors ranging from 5 to 10 have been used [Van Dongen and Widianto, in
prep.; Miesch, 1975]. In this paper we will follow the common convention to
underline random variables, in order to distinguish them from fixed values.
For any rj a classification Ai of the observations is defined, in which any
class a; s j=1,...,mj, of Aj, possibly of different sizes, consists of
observations which have intermediate distance up to rj. It is noted that the
actual distances are only approximately equal to each other. Let the number
of elements in aij be denoted by the generic symbol nj; in particular, np =
n while ng is always equal to 1. The subscript i decreases as the classifi-
cation becomes more refined. To be more specific, at each level i of the-
hierarchy is associated the partition Aj of the samples. The classes aij’ j
=1,...,mj, satisfy two conditions:

i) any two points Xy and X, in the same class of Ay have distance

|xl-x2| < ry;

ii) for i = 1 any class aij of Aj is a union of classes in Ai-l'
Obviously, Ag is the finest classification, in which every class contains
exactly one observation, whereas Aj consists of one class, containing the n
observations.

Next with each classification Aj a subspace of R™ can be associated
consisting of the set of vectors which are constant within the classes aij
of A;. This subspace will be called Aj as well. The space Ai+1 is a subspace
of Ai' which, by noting that the subspace Ao equals R®, holds for i =
0,...,h-1. We notice that A, is spanned by 1,, the vector consisting of n

elements all equal to one.
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For a classical nested design with independent observations within each
stage and with homogeneous variances at the same stage the covariance matrix

h-1 h-1 ’
V of y would be V =3 o%Vi =Z agUiU{, where the jth column of Uj equals
i=0 i=0

the n-vector with elements 1 in the jth class of A; and 0 elsewhere. The
columns of U; are an orthogonal base of Aj. Each variance component a% is
associated with a level of nesting in such a way that the variance component
a% is the variance within Aj, the class of points with the same distance rq,
the variance component a% is the variance within the class of points with
the same the distance rj4], and a%_l is the variance within Aj, the class of
points with distances up to rp, being the largest distance considered.

In short, we will use the following linear model:

Ey = uly o (1)
h-1 9 ,
Var(y) = % o3U4U;.
i=0 '
2 2 2 s
Values for the parameters p, 03, 0] ,..., 0h-1 have to be estimated from the

available data.

A feature commonly encountered in spatial studies is that observations
close to each other are more similar to each other than observations which
are separated by a larger distance. Use can be made of the semivariogram to
describe the (spatial) dependence between observations, which, as a

function of the distance r between observations is, defined as

y(xr) = %E[(¥ - ¥r)?] (2)

where y and y, form a pair of points separated by a distance r. The factor
% allows one to establish a straightforward analogy between the
semivariogarm and the covariance function c(r) in the case that Var(y) =
c(0) exists: y(r) = ¢(0) - c(r), and hence the limiting value for r --> =
equals Var(y).

Based on the fact that to the matrix of semivariogram values between

observations any constant may be added without changing the covariance
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structure between the observations it has been shown [Corsten and Stein,

Y

subm.] that the semivariogram value for the 1th distance equals the
cumulative sum of the i variance components for the levels up to the i-lth

one:

i-1
1(rp) = 3 o3 (3)
§=0

Eq. (3) holds generally and exactly for balanced as well as unbalanced
designs. Summation of estimated variance components therefore yields an

estimation of h semivariogram values in nested designs.
3. ESTIMATING SEMIVARIOGRAM VALUES IN NESTED DESIGNS

Different estimation procedures are distinguished to estimate
semivariogram values by means of variance components in nested designs. In
this paper we will compare mean squared pair difference (MSPD) estimation
with expected mean squares (EMS) and with restricted maximum likelihood

(REML) estimation.

3.1. Expected mean sgquares. )

Expected mean squares are commonly applied to estimate variance
components in ANOVA procedures. We will here present only the main results
of expected mean square estimation of variance components; further details

are elaborated on in the Appendix. Define P;j to be the orthogonal

projection on the orthogonal complement of Ai+1 in Ai (i=0,...,h-1). In
1 -1
i . 1 PR [ r ’ ’
matrix form P; may be ertten as P Ui(UiUi) Ui Ui+1(Ui+1Ui+1) Ui+1’

from which we notice that Pix is the difference vector between the
projection of y on Ai and its projection on Ai+1’ representing variation
between the classes of Ai within those of Ai+1' We notice that E(Pjy) =0
and hence that E[(Pijy)'(Pi¥)] = E[z'Piz] = tr(Pi{V). With

1 1

20

n, n,
i i+l
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for i 2 j = 0, summation extending to all classes of Aj’ we obtain the

following expected sums of squares equivalent to (4):

i
E(y'Piy) = % k, .02
j=0 J 1]
which holds for i = 0,...,h-1.

(3

Equating E(I'Piy)/kio to MS; = y'Piy/kio, one can solve the linear

2

equations emerging from (5) to obtain unbiased estimators &% of o2, which by

i i’

summing according to (3) yield unbiased estimators %i.of h semivariogram

values. After some algebraic manipulations, one can deduce with the

following successive operators

1
Q=—""%Fp
k00
1 i-1k, . .-k..
Q= — B, + = _1,3+#1 ij Q3
<. j= k..
11 11
that
1i+1 = Y'Qi}’
for i=0,...,h-1.

(6)

(7)

By means ofy(7) an expression for the variance of ?i is obtained. As 1is

well known, var(y'Ay) = 2tr(AVAV) for any symmetric A, if y follows a

Gaussian distribution [Searle, 1987]. Hence, under normality, var(%i) =

2er(Q; ,VQ; 4V).

3.2. Mean squared pair differences.

As mentioned before the semivariogram value for any distance is most

commonly estimated by half the mean of squared pair differences of all pairs

of points with (approximately) that distance between the points. The

intuitive unbiased semivariogram estimator 3; is defined as half the mean of

squared differences among all pairs of observations at distance rj. In order
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to allow a comparison of this MSPD estimator with the EMS estimator, it is

written as a quadratic form:

¥'Djy, (8)

where Nj is the number of pairs with distance rj and the symmetric matrix Dj

' _17! . . 3 5 . = -
equals Ui-lUi—l UiUi+H1’ where H; is a diagonal matrix with {Hl}jj n.-n. ;.
n:.L and n, 4 being the size of the class of Ai and Ai-l’ respectively,

- .th : . .
containing the j element. Again under normality, the variance of

estimator (10) is obtained as var(%i) = (1/2N§)tr(DiVDiV).
3.3. Restricted Maximum likelihood.

For the Restricted Maximum Likelihood (REML) estimation procedure the
method of scoring as outlined in [Patterson and Thompson, 1974] is adequate.
In fact, REML is an extensioh of ordinary maximum likelihood, taking a fixed
effect into account. It is shown by several authors that the ordinary
maximum likelihood estimator in a mixed model leads to extremely biased
estimates and are therefore undesirable. In the model formulation (1), the
general mean p is the one fixed effect, to which the other, random, effects
are orthogonal. By means of the REML procedure estimates for the random
effect parameters are obtained. An estimation of p is obtained afterwards as
p= gty tuvly

In the present paper restricted maximum likelihood is formulated in
terms of increments of the observations. Vectors of increment coefficients
of the observations are orthogonal to the (fixed) expectation vector and use
of increments avoids the search for a generalizedAinverse of a singular
matrix. When there are n observations there are n-1 independent increments.
To obtain them, define z by means of z = Cy, where C, of size n-1 * n
contains a basis for the vector of increment coefficients. For example C may
be obtained by deleting any arbitrary row of (I-1n(1n1;)'11£). The row
choice is irrelevant, since the space spanned by the remaining rows remains
the same and any basis of that space can be tarnsformed into another one,

e.g. the one arising by deleting another row. We notice that Cl, = 0 indeed,
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and hence that z has coefficients orthogonal to 1,. The variance of z equals

h-1 h-1
W = Var(z) = CVC' = 3 a?CUjUj'C' -z a%Wj (9)
j=0 j=0

The likelihood equations are obtained by putting g'W‘lwiW'lg equal to its
expectation tr(W-lwi). As can be shown by standard methods [Kitanidis,
1983], this yields the following system of linear equations:

h-1
tuW%WJLy)=2%uwdmw%ﬁ,i=m””mL (10)
j=0

In order to solve (10) one starts with a preliminary vector of estimates
(5%,...,&h_l). These are inserted for (a%,..Q,aﬁ_l) yielding a new matrix W
= Wlég + ...+ Whaﬁ_l, which may be used in turn to improve the estimate of
a%. Semivariogram values are obtained by adding the estimated variance
components accofding to (3). The matrix F, defined as {fij} with fij =
tr(W-lwiW_le), is the inverse of the Fisher information matrix [Patterson
and Thompson, 1974], which is obtained during the solution of (10).
Asymptotic estimates for the variances of the variance components are
obtained as the coefficients of the matrix F-l. As an estimate of asymptotic
variance of the semivariogram estimator the sum of the variances of the
variance components plus twice the sum of their covariances will serve.

Hence

Var(yi) = £4F “f;, (12)

Y

where fj is the vector of length h, with the first i components equal to 1

and extended with h-i+l components equal to zero.
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IV. EXAMPLES AND RESULTS

4.1. Four-stage balanced design

The estimation procedures were applied to several data sets. The first

data set contains 16 observations collected according to a 4-stage balanced

[ N U R U N U N U R U RN N R N
1.1 2.1 4.1 5.1 9.1 10.1 12.1 13.1

1.2 2.2 4.2 5.2 9.2 10.2 12.2 13.2

Fig. 1. Observations collected according to a four-stage nested design with
two branches at each level.

MSPD EMS REML
71 Est 0.005 0.005 _ 0.005
Var 0.000 0.000 0.000
Ty Est 0.5025 0.5025 0.5025
Var 0.125 0.125 0.125
73 Est 4.752 4.752 4.752
Var 20.28 20.28 20.28
7, Est. 34.503 34.503 34.503
Var. 2053.1 2053.1 2053.1

TABLE 1. Estimated semivariogram values and their estimated variances as
obtained with different estimation procedures for the four-stage
balanced design.

design, with two branches at each level, yielding a total of 16 observations
(fig. 1). Values are assigned to the observations in such a way that small
differences occur among observations which are close to each other, and
larger differences for observations which are further apart.

Estimated semivariogram values and their estimated variances, which for
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the EMS and MSPD procedure are obtained by inserting estimated values for
the variance components in the matrix V, are summarized in table 1. For this
balanced design we notice that the three procédures yield identical results
for v1 (i =1, 2, 3 and 4) both for the estimated semivariogram values and.
for their variances. In particular the variances of the semivariogram values
for both EMS and for MSDP were obtained as a the quadratic form in a%, a%,

2 2 . . .
09 and 03 with the symmetric matrices

rA] = 0.25] [Az =
1
6
8

[eN e

.25 0.5 0.188 0.25

.188 0.257 rA3 = 0.156 0.188 0.188
[ 0's ]
0.188 0.5 1.0

-

FAA = 0.156 0.188 0.25
0.313 0.375 0.5
0.375 0.75 1

0.5 1 2 R

for var(yy), var(yy), var(y3) and var(y,), respectively. Uniform minimum
variance unbiased estimators of the variance components for balanced designs
in the sense of Lehmann [Lehmann, 1983], are therefore obtained by REML

estimation as well as by EMS and by MSPD.

4.2. Three-stage unbalanced design. )

The second data set contains 8 observations collected according to a
three-stage unbalanced design (fig. 2). Although the data are artificial
one may think in a practical soil study that two soil units are sampled,

separated by a distance of approximately 1 km, in each of which two parcels

| I Different soil types

| Different land use
|

| | | 1 | Observations
2

Fig. 2. Observations collected according to a three-stage nested design with
one, two or three branches at each level.
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MSPD EMS REML

71 Est 0.800 0.750 0.744

Var 0.333 0.281 0.277

i) Est. 8.75 7.973 7.113

Var. 86.42 62.47 46.279

73 Est. 42.77 43.198 36.153
Var. 2983 3104 2116

TABLE 2. Estimated semivariogram values and their estimated variances as
obtained with different estimation procedures for the three-stage
unbalanced design :

are sampled, separated by a distance approximately equal to 100m, with
different land use types, in each of which 1, 2 or 3 observations are taken,
separated by 10m.

Estimated semivariogram values and their variances are summarized in
table 2. In contrast to the four-stage design we notice apparent
differences. In particular, variances obtained with the REML estimation
procedure are substantially lower than those obtained with the MSDP and the
EMS estimation procedure. We conclude that REML estimation may be preferred
to EMS and MSDP estimation in this example.

For both MSDP and EMS var(y1), var(yz)‘and var(y3) were again
calculated as a quadratic form in terms -of variance components a%, a% and a%

with the matrices as-fbllows:

~ MSDP:

[ = 0.52] [Az ~ 0.406 0.567] {A3 = 0.333 0.409 0.533
_ . 0.567 1.25 0.409 0.827 1.075

0.533 1.075 2

EMS:

[a1 = 0.5T [ag - 0.395 0.535" Az = 0.321 0.401 0.533
. L 0.535 1.082} 0.401 0.810 1.075

C - 0.533 1.075 2

From this we notice that for this pafticular design the variances
~ obtained with EMS are uniformly lower than the variances obtained with

MSDP. This-ddes not hold‘generally,vhowever.
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4.3. Actual data collected by means of a six-stage unbalanced design

The third data set is the one found in [Pettitt and McBratney, in
press]. This papers considers actual data on the A horizon thickness of
about 100 sites in a field near Forbes in New South Wales, Australia. An
overview of the sampling locations is given in figure 3, whereas a kriged
map of the thickness of the A-horizon is presented in figure 4. In every
block observations are located according to the design presented in figure
5.

In fact, the four observations with intermediate distances 125m, 25m,
5m and 1m in every block occur on transects, whereas the two observations
with intermediate distance 0.2m are located 0.lm above and below the
transect. The transects systematically follow a prescribed direction (0°,
60° or 120° with the horizontal axes) in the 18 blocks throughout the area
in order to study anisotropy. The design is termed by the authors a 5-
stage staggered nested design with blocks. In our terminology this design
will be called an unbalanced 6-stage design.

Blocks have been used to distribute the observations evenly over the
area [Pettitt and McBratney, in press], but were not imposed by
considerations like differences in land use or soil type or different
management conditions, etc. Use of this design has several attractive
properties: the presence of many observations at short distances from each
other allows a precise estimation of the nugget effect, the combination of
blocks and transects yields an operationally efficient sampling scheme and
the use of proportionally increasing distances allows detection of multiple
sources of variation.

Estimated semivariogram values by means of variance components as well
as for their variances are shown in table 3. MSPD estimates and MSE
estimétes are identical (up to calculation precision) due to the fact that
at every level one of the branches has exactly one observation. However,
these estimates differ slightly from the REML estimates. Variance components
estimated by means of the REML estimation procedure, on which the estimated
semivariogram are (1ineafiy) based have lower variances as compared to the
other two procedures, except for that for v3.

Since imposing the blocks in this study is rather artificial, we have
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Fig. 3. Map of the sampling locations in the Forbes site in New South Wales,
Australia. Within each of the 18 blocks 6 observations are located
on transects as described in the text.
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Fig. 5. Observations collected according to a (highly) unbalanced
six-stage nested design.
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MSPD EMS REML

71 Est 1.132 1.132 1.143
Var 0.142 0.142 0.145

Y2 Est 9.767 9.767 9.150
Var. 10.003 10.003 8.633

73 Est. 12.264 12.264 14.593
Var. 11.639 11.639 16.885

T4 Est. 32.597 32.597 30.290
Var. 94.284 94.284 73.852

15 Est. 40.846 40.846 40,602
Var. 128.048 128.048 114.561

76 Est. 103.314 103.314 104.509
Var. 811.035 811.033 757 .410

TABLE 3. Estimated semivariogram values and their estimated variances as
obtained with different estimation procedures for the six-stage
unbalanced design.

estimated the semivariogram also by ignoring the blocks (Fig. 6). A Gaussian

model fitted the experimental semivariogram best, as judged by the weighted

2 and a nugget

error sum of squares, yielding a sill value equal to 109.2 cm
effect equal to 19.9 cmz, whereas 'eye-fitting’' would have yielded an
exponential model with a nﬁgget effect equal to about 9 em?. It appears that
the nugget effect obtained by means of the experimental semivariogram
neglects the semivariogram value at the smallest distance, obtainable by
means of the nested ANOVA: the observed value equals 9 cmz, which is in
agreement with the estimate for y) obtained with the nested ANOVA, but not
with that for yj. We further notice that the estimate for the sill is well
in agreement with the variance components obtained by means of the nested
ANOVA, but the distance at which this value is reached (259m), a value of
crucial importance for many soil studies [Webster, 1985] is not obtainable
from the nested ANOVA, for which the largest distance at which a variance

component is obtained equals 125m.
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Fig. 6. Experimental semivariogram of the thickness of the A horizon in the
Forbes site in New South Wales, Australia. A fitted Gaussian model

is shown.
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DYSCUSSTON

The use of nested designs to calculate variance components for spatial
semivariograms has certain attractive properties. For example, REML
procedures may be used to estimate their values as well as the associated
variances. As indicated by this study, REML estimation procedure is
attractive as compared to EMS and MSPD estimation, especially if the
sampling design is (highly) unbalanced. There appears to be little gain in
using MSPD estimation, which, however, yields similar results to the EMS and
the REML procedure for balanced designs. Nested designs are helpful in
revealing the different sources of variation within a region.

Comparing semivariogram estimates obtained by means of model fitting
with those obtained by nested analysis of variance, indicates that imposing
a block structure on an area is not very fruitful, although estimating the
nugget effect is apparently more precise by the latter procedure. There
remains a major drawback when using nested designs, since only a limited
number of experimental semivariogram values will be available. No insight
can therefore be obtained concerning the range of the semivariogram, nor
whether any model is most likely to suit the experimental semivariogram.
This prohibits the analysis of spatial data in all details.
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APPENDIX - Expected mean squares

Expected mean squares are commonly applied to estimate variance
components in ANOVA procedures. Turning to relevant expected sums of squares
define Pj to be the orthogonal projection on the orthogonal complement of
A, in Ai (i =20,...,h-1). Then Pix is the difference vector between the

i+l

projection of y on Ai and its projection on A representing variation

i+1’
between the classes of Ai within those of Ai+l'

In order to calculate expected sums of squares we notice that E(Pjy) =
0 and hence that the required expected sum of squares is E[(Pix) (P51 ] =
E[X'Pil] = tr(PiV). v

h-1
To evaluate tr(P;V) = 2 tr(P;U J)a it is noted first that Pin =0
j=0

for j > i, since each column of Uj does not alter by pro]ectlon on.A or

Ai+1' Next, observ1ng that P1 may be written as U, (U U. ) -
l+l(U f el l+1) i+1 we find by standard methods that

tr(P;V) = % tr(PlU U‘)U

j=0
i 11
=.Zt0? = n? (= - )}, (a1)

where the second summation extends to all classes of Aj. For example, the

coefficient of a% in tr(PyV) is zn2(1/n. - 1/n

of classes of A minus that of A, i+

1+1), which equals the number

1+ that is the dimension of PjR", the
divisor for obtalnlng mean squares from sums of squares.
. _ w2 ) . . . .
With kij §.an(l/n.l _1/ni+1) for i 2 j =2 0, summation extending to all
classes of Aj’ we have the following expected sums of squares equivalent to

equation (3) before:
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within Ag E(y'Poy) = kooag

i
f ki Peyy = 2

between A; within A;.1 EQ@'Piy) jiokijaj (A2)
h-1

between Ah_1 E(x'Ph_ly) = 3 kh-l ja§'
j=0 "%

Equating E(X'Pil)/kig to MS; = y'Piy/kiO, one can solve the linear
equations emerging from (A2) to obtain unbiased estimators 3% of a%, which
by summing according to (A2) yield unbiased estimators ;i of h semivariogram
values. After some algebraic manipulations, one can deduce with the

following successive operators

1
Qo = — Pg
K00
1 i-1 k. . . -k,.
Qin___Pi,r.z__l»_LMQj . (A3)
ki1 =0 kyy
that
:;i'l'l = }"Qiy (a4)
for i=0,...,h-1.

From (A3) and (A4) it follows that the estimators ;i are non-negative,
although the variance components a§ have a positive probability of attaining
negative values. Indeed, we notice that Qj is a linear combination of
orthogonal projections with positive coefficients, due to the inequality kij

k, . 1 for all i; this is based on the fact that the sum of squares of a

i,j+
set of positive numbers is smaller than the square of the sum of the same

set.
Based on (A4) an expression for the variance of %i is obtained. It is
well known that var(y'Ay) = 2tr(AVAV) for any symmetric A if Yy follows a

Gaussian distribution [Searle, 1987]. Hence, under normality, var(%i) =

2tr(Qi_1VQi_1V).



