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ABSTRACT 

Cokriging and kriging are compared in the case when all variables are available at the same sample 
locations. The advantage of  cokriging over kriging is that it ensures the coherence between an esti- 
mation of  a sum and the separate estimation of  each of  its terms. To spare modeling effort it is inter- 
esting to know in which situation the kriging of a variable is equivalent to its cokriging with respect 
to a set of  auxiliary variables (autokrigeability). 

In regionalized multivariate data analysis (MDA) it is important to know whether a whole set of 
variables is autokrigeable (intrinsically correlated). Intrinsic correlation implies that underlying fac- 
tors can be computed from a classical MDA instead of a coregionalization analysis and that they can 
be kriged instead of being cokriged. Three criteria for identifying intrinsic correlation are discussed. 

INTRODUCTION 

Kriging is a method to estimate, in a spatial context, the value of  a variable 
of  interest at a location where it has not been measured, using data in the 
neighborhood. Cokriging is the extension of  kriging to the situation when 
auxiliary variables can be used to improve the accuracy of the kriging estimate. 

When considering cokriging it is important to examine separately the iso- 
topic case (from the Greek: iso = same and topos = location ), where all vari- 
ables have been measured at the same sample locations x~, ot = 1, ..., n and 
the heterotopic case, where some sample locations are not shared by all vari- 
ables. The heterotopic case, where the variable of  interest is undersampled, 
has been extensively analyzed in the literature and numerous case studies show 
the benefits of  taking into account the information provided by auxiliary 
variables correlated with the variable of  interest. 

In this article we restrict attention to the isotopic case and first treat the 
idea of  coherence of  the estimated values of  a sum of  variables, providing two 
examples. We remind the reader the equations of  simple cokriging in compact 
matrix notation to show why cokriging is equivalent to kriging when the di- 
rect variogram is proportional to the cross variograms (autokrigeability) or 
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when all the direct and cross variograms are proportional to a basic variogram 
model (intrinsic correlation). We transpose these concepts to regionalized 
multivariate data analysis (MDA) in the framework of the linear model of 
coregionalization and discuss, before concluding, several criteria for deter- 
mining whether a coregionalization is intrinsically correlated. 

COHERENCE 

In the isotopic case the main advantage of cokriging versus kriging can be 
seen in the fact that the cokriging estimator of a sum of variables S(x): 

N 

S ( x )  = Z,(x)  ( 1 ) 
i = 1  

is coherent with the cokriging of the N terms Zi (x): 

N 

SC (x)= zC (x) (2) 
i = 1  

However, in general the kriging of S(x)  is not equal to the sum of the sep- 
arate krigings of the Zi(x). We shall illustrate this with two examples (bor- 
rowed from Rivoirard, 1990). 

Example 1." thickness of a soil horizon 

The thickness T(x) of a soil horizon is defined as the difference between 
its upper limit Zu (x) and its lower limit ZL (X): 

T(x)  = Zu (x) - Z L ( x )  (3) 

Then, cokxiging the thickness T(x) using either Zu(x) or ZL(X) as an aux- 
iliary variable is equivalent to taking the difference between the cokriged val- 
ues of Zu(x)  and ZL(X): 

TcK (x) = zCK(x) -- ZCLK(X) (4) 

In general the kriging of the left-hand side is not coherent with the differ- 
ence between the krigings of the right-hand side terms: 

TK(x) ~ Z~ (x) - ZKL (X) (5) 

and it cannot be decided which side of the equation yields the better esti- 
mated value for the thickness. 

It should be noted that neither kriging nor cokriging will ensure a positive 
estimated value, a point that has been examined at length by Chauvet ( 1988 ). 
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Example 2: indicators of a discrete variable 

Say we have data of a variable Z(x)  with four possible values: 

{0, 1, 2, 3} (6) 

An indicator Ico,,d is a variable taking the value 1 if the condition cond is 
fulfilled, and the value 0 else. Obviously the cumulative indicator showing if 
Z(x)  is greater than (or equal to) 2 can be defined as the sum of the disjunc- 
tive indicators of Z(x)  for 2 and 3: 

Iz(x)~2 =Iz(x)=2 + Iz(x)=3 (7) 

and the eokriging of the cumulative indicator using one of the disjunctive 
indicators as an auxiliary variable is equal to the sum of the cokrigings of each 
disjunctive indicator. 

But, except for what is called the mosaic model, the kriging of the cumula- 
tive indicator is not compatible with the sum of the krigings of the two dis- 
junctive indicators: 

K K lz~.~)> 2 v~ + II)(x) (8) Iz(x)=2 = 3  

This concept of coherence in the estimation of indicators is at the heart of 
a current debate about non-linear methods in geostatistics (e.g. see Lajaunie, 
1992). 

S I M P L E  C O K R I G I N G  

When is cokriging equivalent to kriging in the isotopic case? 
To examine this question we shall consider only simple cokriging, i.e. cok- 

riging without any constraints on the weights, which implies second order 
stationarity and the existence of a cross covariance function Cij(h). The set 
of variograms 7u(h) cannot be used for simple cokriging because it is a con- 
ditionally negative definite function and is appropriate only for kriging sys- 
tems constraining the sum of weights to 0 or 1 for each variable. 

The variable of interest in the set of variables Zj (x), i=  1, ..., N is denoted 
by the index io. The simple cokriging estimator builds on the mean m~ o of the 
variable of interest, to which is added a sum of weights w~, each multiplied 
by the difference of a sample Zt(x,~) with respect to the mean mi: 

N n 

Z?o(Xo)=m,o+ Y. ~ w i ( Z , ( x ~ ) - m i )  (9) 
i = 1  o t = l  

By minimizing the variance of the estimation error between the unknown 
value Z;o (Xo) and the estimator Z* (Xo) the following system is obtained in 
block matrix form: 
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:, Clj Cl )(wl) (Clio) 
I ii c. wi ciio 
\c 1 

(10) 

where Cij is the matrix of covariances between samples for the variable pair 
{Zi, Zj), W i is the vector of cokriging weights for the samples of the variable Zi 
and c .  o is the vector of covariances between the sample locations x .  and the 
location of interest Xo for the variable pair (Z~, Z/o }. 

AUTOKRIGEABILITY 

A variable of interest is said to be autokrigeable  (self-krigeable) with re- 
spect to a set of auxiliary variables if its cokriging is equivalent to its kriging. 
Matheron ( 1979 ) has shown that the variable of interest is autokrigeable when 
its cross variograms are proportional to its direct variogram: 

7,oS(h) =aioj Y;o~o (h) ( 11 ) 

where a ~  are coefficients of proportionality. When covariances are used, this 
implies the same type of relationship: 

C, oj( h ) =a~os C,.oio(h) (12) 

It is easy to check the autokrigeability for simple cokriging. Supposing, 
without loss of generality, that the first variable is the variable of interest, we 
obtain: :a i a:la:l)( ) (ac) 
~ ail Cl i Cij Cilv wi = ail Cl 1 

\ a N I  C l l  ... CNj ... CNN WN aNl e l l  

(13) 

Obviously the vector (wl, 0, ..., 0 )T in which only the cokriging weights for 
the first variable are non zero, is a solution of the cokriging system. It is the 
unique solution as the system is assumed to be nondegenerate. 

INTRINSIC CORRELATION 

A set of variables is said to be intrinsically correlated if all direct and cross 
variograms are proportional by coefficients bis to a basic structure 7 (h): 

7ij( h ) =bij 7(11) (14) 
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Similarly, in terms of covariance functions intrinsic correlation implies the 
model: 

C,j(h)=tTijp(h) (15) 

where cr;j are the covariances between the variables and p (h) is a spatial cor- 
relation function. 

For a set of intrinsically correlated variables the isotopic simple cokriging 
can be written in compact form using the Kronecker product ® (see e.g. Mag- 
nus and Neudecker, 1988 ): 

( V®R)w=Vio®rio (16) 

where V is the variance-covariance matrix, containing the covariances aij be- 
tween the variables; R is the spatial correlation matrix of the simple kriging 
system of the variable of interest; w is the vector of cokriging weights; Vio is 
the column vector of V containing the covariances aiio with the variable of 
interest; rio is the (rescaled) right-hand side of the simple kriging system of 
the variable of interest. 

The vector V;o on the right-hand side is a column of Von the left-hand side. 
Thus in the left-hand covariance matrix of the simple cokriging there is one 
column of matrices R, each of which is multiplied by a different element of 
the vector v; o. Understanding this, it is now trivial that a vector Wio, defined 
as the only non zero subvector of w and containing the simple kriging weights 
for the samples of the variable of interest, represents the solution of the sim- 
ple cokriging system for an intrinsically correlated coregionalization: ()(0) 

... V io ® R .. .  W io -"~ V io ® l"io (17) 

o 

Clearly, each of a set of intrinsically correlated regionalized variables is, by 
definition, autokrigeable. However, it is interesting to note that if a variable 
of interest is autokrigeable, this does not imply that the set of auxiliary vari- 
ables is intrinsically correlated. Rivoirard ( 1989 ) has used this fact in non- 
linear geostatistics to develop models based on orthogonal indicator residuals. 

The concept of autokrigeability for the variable of interest or for a whole 
set of variables (in the case of intrinsic correlation) is also valid for ordinary 
cokriging with a variogram model. 

INTRINSIC CORRELATION AND THE LINEAR M O D E L  

In this section we first discuss the implications of intrinsic correlation in a 
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regionalized MDA based on the linear model ofcoregionalization. Then we 
consider the reverse: applying a classical MDA to spatial data which is not 
intrinsically correlated, and examine some of the consequences. 

In the linear model of coregionalization the variables Z~ (x) are represented 
as a linear combination of uncorrelated variables Y~ (x) with transformation 
coefficients a~,p. The index u refers to a spatial scale and the index p denotes 
a particular underlying factor at that scale 

S N 

Z/ (x )=  )-" ~ a~up Y~(x) (18) 
u=O p =  1 

For a given scale Uo all factors y~o (x) have the same variogram gu (h). For- 
mulated in this way, the linear model of coregionalization implies a nested 
multivariate variogram: 

S 

G(h)= E Bugu(h) (19) 
u=O 

where G(h) is the matrix of variograms and the Bu are positive definite ma- 
trices of coefficients b~ called coregionalization matrices. An efficient algo- 
rithm for fitting the nested multivariate variogram model to matrices of ex- 
perimental direct and cross variograms, ensuring positive definite 
coregionalization matrices is given by Goulard and Voltz (1992). 

Now, if the data are intrinsically correlated, what consequences does this 
have for the nested multivariate variogram and for the linear model of 
coregionalization? 

When correlation is intrinsic, all coregionalization matrices are propor- 
tional to a basic matrix B: 

B~ =a~B (20) 
and the nested multivariate variogram simplifies to: 

S 

G(h)=B ~ augu(h)=B?(h) (21) 
u=O 

which shows that the elements of the function matrix G(h) are all propor- 
tional to a basic variogram ?(h). 

In practice, the proportionality of the coregionalization matrices means that 
the eigenanalysis of each Bu will only differ in the eigenvalues, not in the ei- 
genvectors. In other words, principal component analyses based on the core- 
gionalization matrices will provide sets of factors combining the variables in 
the same way at the different spatial scales. Consequently, with intrinsic cor- 
relation the linear model reduces to: 

N 

Z , ( x ) =  ~ a~Yp(x) (22) 
p = l  



COKRIGING VERSUS KRIOINO 89 

i not depending on spatial scale and stem- with transformation coefficients ap 
ruing from a classical MDA. The Yp(x) all have the same direct variogram 
7 (h). The non-correlation between different Yp (x) implies that the cross var- 
iograms are zero. Thus the factors calculated from a classical MDA in pres- 
ence of intrinsic correlation are autokrigeable. 

Conversely, when the correlation is not intrinsic and the eigenvectors of 
different coregionalization matrices do not match, what happens if we per- 
form a classical MDA on the data? 

It can be seen from a relation between the variance-covariance matrix and 
the coregionalization matrices in the framework of a second-order stationary 
model without periodicities (Wackernagel, 1988 ): 

S 

V= ~ Bu (23) 
u = 0  

that the correlation structure described by the variance-covariance matrix V 
is a blending of the correlation structures at different spatial scales. A classical 
MDA based on V yields factors that are either just blurred or, in the worst 
case, completely meaningless. 

This is illustrated in Fig. 1 by the cross variogram between the third and 
the fourth principal component from a classical MDA of gold exploration 
data (Wackernagel and Sanguinetti, 1992). In this example, the cross vario- 
gram for the two supposedly uncorrelated principal components PC3 and PC4 
is not zero at short distances: a dear  indication that correlation is not intrinsic. 

CRITERIA FOR INTRINSIC CORRELATION 

A first criterion is to use the codispersion coefficients c%(h)  (see Goo- 
vaerts, 1994 this issue) which is obtained by dividing the cross variograms by 
the square root of the corresponding product of direct variograms: 

YO(h) 

Correlated at 
short distances !! 

I . . . . . . .  = - = - - . h  
900m 3.5km 

Fig. 1. 
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),~j(h) (24) CC/j(h)--N/~ii(h) ~)JJ( ~ ) 

(i) if the codispersion coefficients are not equal to a constant independent of 
the lag h, the correlation is not intrinsic (Matheron, 1965, p. 150). 

It should be noted that the codispersion coefficient is in general not a cri- 
terion for autokrigeability, which can be checked by looking at graphs of au- 
tokrigeability coefficients aC~oj(h) to see whether they can be assumed con- 
stant for a given pair (i0, j ) :  

?~°J(h) (25) 
aCio j ( h )  = ~ioio (h) 

A second procedure for identifying the presence/absence of intrinsic cor- 
relation, used by Wackernagel ( 1988 ), is to plot the position of the variables 
in the planes spanned by pairs of eigenvectors defining the most important 
factors and to compare these plots for different coregionalization matrices: 

(ii) if the eigenanalysis of the coregionalization matrices yields similar sys- 
tems of eigenvectors, the correlation can be assumed intrinsic. 

The example illustrated by Fig. 1 exhibits a third criterion for intrinsic 
correlation: 

(iii) if the factors computed from a classical principal component analysis 
have non zero cross variograms, the correlation between variables can- 
not be assumed intrinsic. 

CONCLUSION 

In this overview we have insisted upon the importance of coherence in the 
results of estimation when dealing with sums or linear combinations of vari- 
ables in the isotopic case. Cokriging ensures the compatibility between an 
estimation of a sum and the separate estimation of each of its terms, while 
kriging generally does not. 

In view of the additional computational and modeling effort implied by 
cokriging, it is important to know when cokriging is equivalent to kriging, i.e. 
when a variable is autokrigeable. This simplification occurs for ordinary (and 
simple) cokriging when the direct variogram of the variable of interest is pro- 
portional to the cross variograms with the auxiliary variables. A procedure 
for identifying this possible feature of the data is to examine the autokrigea- 
bility coefficients between the variable of interest and the auxiliary variables. 
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When the autokrigeability coefficients do not depend on the lag h, the vari- 
able of interest is autokrigeable with respect to a given set of variables. 

In regionalized MDA, linear combinations of variables need to be cokriged. 
Here the simplification to kriging takes place when the set of variables is in- 
trinsically correlated, i.e. when each variable of the set is autokrigeable. A 
coregionalization analysis, establishing covariance matrices between vari- 
ables at different spatial scales, will tell if the correlation coefficients are in- 
trinsic, i.e. independent of spatial scale. The problem can also be approached 
from the other end, by performing first a classical principal component anal- 
ysis negiegting the spatial relationships between the variables and then com- 
puting cross variograms between the principal components to see whether 
they are uncorrelated at all the spatial scales as they should be. 
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