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Abstract--This paper gives a detailed description of a program for the factor analysis of multivariate data 
from samples taken in a physical environment. The spatial correlation of the samples is represented by a 
model of nested spatial structures. The correlations of the variables are summarized by performing a 
principal component analysis on the coefficients of the spatial structures. The result is a linear model of the 
coregionalization that can be used for factorial kriging, conditional simulation, and cokriging. The 
program could be written for a microcomputer connected to a mainframe. 
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INTRODUCTION 

The computer program LINMOD has been de- 
veloped for geostatistical factor interpretation of mul- 
tivariate spatial information. This paper does not 
contain the source code of LINMOD. Rather it is 
intended to give a detailed description for the con- 
struction of such a program in any language and for 
any computer. 

The probabilistic framework of geostatistics has 
been left aside in this paper. The ideas on which the 
algorithms are based on are described in the geostatis- 
tical literature (Matheron, 1965, 1982; Wackernagel, 
1987). 

Geostatistical factor interpretation is based on a 
linear model of  the coregionalization. It assumes that 
a set of spatially correlated (regionalized) variables 
can be represented as a linear combination of uncor- 
related factors (principal components). 

As an illustration, data from a geochemical pros- 
pection campaign near Brilon (F.R.G.) is used. The 
content of three elements copper (Cu), lead (Pb), and 
zinc (Zn) has been measured on soil samples taken at 
irregular spacings in a region of 5 x 6 km z. 

The different steps for the interpretation of  the 
data are the following: 

(I) Calculation of  the experimental variograms for 
all variables (simple variograms) and all pairs of 
variables (cross variograms). 

(2) Definition of  subsets of variables having simple 
variograms with a similar shape. 

(3) Fitting a variogram model to the experimental 
variograms of a subset of variables. The model 
decomposes the variograms into several nested 
spatial structures. 

(4) Calculation of principal components (factors) 
by an eigenvalue decomposition of the matrices 
of coefficients of  each spatial structure. 

(5) Interpretation of the spatial structures and of  
the factors using the nonnumerical (geological, 
biological, etc...) information related to the 
data. 

(6) Estimation or simulation, in the sampled area, 
of values of  the synthetic variables associated to 
structural and principal components of the ori- 
ginal variables, 

The program LINMOD only performs steps (3) 
and (4) of  the data analysis and synthesis. 

THE EXPERIMENTAL VARIOGRAM 

The spatial increment of a variable :, for a lag h 
shall be the difference between two values of  the 
variable for two sample points x and x + h: 

: , ( x )  - :,(x + h) 

where 
x is a vector containing the coordinates of a sample 
point, 
x + h is a vector giving the coordinates of another 
sample point, 
i is an index for the different variables. 

One-half of the average of increment products for 
different lags h belonging to a lag class h~ can be 
calculated. This is termed the experimental vario- 
gram: 

~.(h~) - ½ N~ ~ [:,(x. + h )  - z , ( x . ) l  

× [:j(x, + h) - z : , ) ]  

where 
k is an index for the different lag classes, 
h is a vector belonging to the lag class hk, 
N~ is the number of increment pairs for the lag 

class ht, 
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j is another index for the different variables. 
For i - - j .  the results for different lag classes h~ 

form the simple variogram of a variable - ,  For i ¢ ), 
this is termed the cross variogram between a variable 
:, and another variable :j. 

The cross variogram is symmetrical for any vector 
class h k : 

7,,(h~ ) = "/,,( -- hk ). 

Therefore it cannot detect a possible shift in the 
spatial correlation of a variable pair. In nature, the 
cross correlation between two variables may be shif- 
ted. especially if one variable has been displaced (e.g. 
a chemical element that has gone into solution and 
has migrated). 

The experimental cross covariance can be cal- 
culated and be checked for shifted cross correlation. 
But as the covariance requires a more restrictive 
hypothesis ofstationarity than the variogram, it is not 
a good criterion. 

TIlE StiAPE OF TIlE VARIOGRAM 

The experimental variogram of a variable may be 
connected to information about physical (geological, 
biological) processes in the area in which the variable 
was measured. 

The shape of the variogram can be subdivided into 
several parts characterized by a sudden change of the 
slope. Each of these changes occurs at a certain dis- 
tance termed the "range". 

For example, there might be a discontinuity at the 
origin. It could be due to either measurement error 
(and then there is no range) or it could be due to the 
presence of geometrical objects of a size far below the 
size of the sampling grid. Then the corresponding 
range is almost zero and this is termed the 'nugget- 
effect". 

There also might be a sudden change of slope, if 
the changes in the values of the variable are connected 
to the occurrence of objects such as mineralized len- 
ms. Then, the distance at which a change of slope 
occurs will reflect the average diameter of the objects 
in the direction of calculation of the variogram. Serra 
(1968) has studied extensively the Lorraine iron ore 
deposit in this manner, and he identified six different 
ranges at different spatial scales. 

It should be noted that clusters in the sampling 
pattern can lead to an artificial range that has nothing 
to do with the physical behavior of the variable, 

TI lE FIT OF THE .MODEL 

In this procedure, the experimental variograms of 
a given variable set are modeled with a linear com- 
bination of variogram functionsg,(h) with coefficients 

7+(;0 ~ ~ b:,~.(h) 
u - O  
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here 
u is the index of different spatial structures, 
.'~'~ ts the number of spatial structures, 
g+(h) is a variogram funcuon with a specific range. 
b: is the coefficient of a variogram function for 

a variable or a variable pair. 
[his ~ ariogram model should be u~d only [br a set 

of ~.armbles that has the same number of spatial strut- 
lures on its simple variograms The variables 
therelbre should be classified into different sets 
characterized by a particular sariogram shape+ 

The data interpreter selects the number and the 
types of the variogram functions g,,th)(Appendix I1 
and specifies their ranges 

For a given set of N variables, there are ,.V(3: + I 
2 variograms to be fitted The (N, + I)N(N + 1) 2 
coefficients b,~ are calculated b> weighted least 
squares. We used the routine VE0,4AD from A.E.R.E. 
(1985) for this purpose+ The weights arc subjective 
and should be modified by the user so that the shape 
of each experimental variogram is reproduced satis- 
factorily by the variogram model (Appendix 2) 

The routine VE04AD allows the programmer to 
detine bounds for the values of the coefficients b,~. As 
the matrices B~ of these coetticients have to be positive 
semidefinite, the following necessary (but not suf- 
ficient) conditions have to he respected: 

b',', :> 0 

and 

lh',',t ~< ,v/b,,b,, tCauchy-Schwarz). 

This can be obtained easily by first fitting the direct 
variograms subject to the bounds: 

where ~c is the biggest number representable by the 
computCrm 

Afterwards, the cross var~ograms are fitted under 
the conditions: 

_ /,h.~,. . , - 7 - ; .  x' "'"". <<" b~ ~ + x /h , ,h .  

The experimental variograms arc stored on a bin- 
ary file and are read into memory one at a time. Only 
the parameters of the model need to be retained in 
memory. After each fit, a plot of the experimental 
values and fitted model is realized on a graphic termi- 
nal. 

For the cross variogram+ the following curve is 
displayed: 

Hull (7,,(h)) = + --~ \ / b : h ~  g . (h )  
u-~J 

It is termed the "'hull o f  perfect correlation", be- 
cause it represents the ideal situation of a perfect 
positive or negative correlation in the frame of the 
model, it allows the user to judge the fit of the cross 
variogram in the context ol" the correlation between 
two variables. 
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THE BRILON DATA 

The three variables Cu. Pb, Zn were measured on 
2049 soil samples collected north of the town of Brilon 
(F.R.G.) by the Bundesanstalt fuer Geowissenschaf- 
ten und Rohstoffe (B.G.R.) during the project 
“Rhenoherzynikum”. 

The fit of the six variograms of the Brilon data is 
shown on Figure 1. 

The three simple variograms (Fig. 1, left-hand 
side) have a similar shape: a jump at the origin. a 
section with a steep slope up to a range of 130m. a 
section with a smooth slope, that gets flatter at dis- 
tances over 2300 m. Thus the following model was se.l- 
ected: 

y,,(h) = h”, + bl, sph (h. l30m) + bt sph 

x (h, 2300m) 

where sph (h. a) is a spherical variogram function with 
a range parameter a (see Appendix I). 

The same model was fitted on the three cross vario- 
grams (Fig. I, right-hand side), which show a different 
behavior of the structures. The degree of presence or 
absence of a spatial structure on the cross variogram 
rcflccts the degree of correlation of a pair of variables 
at a given spatial scale. The dotted curve on the 
graphs of the cross variograms represents the hull of 
perfect (positive or negative) correlation. 

Zn- If 

eRtoll n 

y(n) 

Pb- 

Y 

Table I shows the structural correlation coef- 
ficients calculated on the basis of the variogram 
model. together with the ordinary statistical correla- 
tion coefficient, which does not take into account the 
spatial nature of the data. 

Cu and Pb seem to have a weak correlation at the 
regional scale (I 30-2300 m) and no correlation at the 
other scales. For Cu and Zn, the highest correlation is 
at the level of the scale below the smallest sample 
spacing (IO m). While for Pb and Zn there seems to be 
some correlation at the local level (IO-130m). 

PRINCIPAL COMPONENTS 

Principal components are an efficient tool to sum- 
marize the information contained in a variance-cova- 
riance matrix or a correlation matrix. Thus we can try 
to summarize the matrices gU of coefficients 6;. ter- 
med “coregionalization matrices”, using a sum of 
uncorrelated factors. 

Principal components establish a linear model of 
the variables composed of linear factors. The linear 
model of the coregionalization states that the original 
variables Z, can be represented as a linear combina- 
tion of uncorrelated variables Y; with transformation 
coefficients (r’.,: 

2n-d /.a 
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Zn- 

CW 
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Figure I. Six variograms of Brilon data with ranges of 130 and 2300m. 
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Table 1. Statistical correlalaon coet~cient and three structural correlation 
coet~cients 

CU-PB 

CU-ZN 

,='B-ZN 

STATISTICAL MICRO LOCAL REGIONAL 
CORRELATION S TRUC TLME STRUCTURE STRUCTURE 

0 - TOPl 10 - 130M f 3 0  - 23001¢ 

- .  0 8  0 - .  0 4  - 3 6  

• 4 2  . 5 7  3 1  4 2  

• 3 5  , 2 3  4 6  I Y 

where 
p is the index of the principal components, 
N, is the number of variables, that is principal 
components• 

The eoregionalization matrices B~ are decomposed 
into a system of eigenvalues and eigenvectors: 

B, = QTA, Q, = (v/'~uQ,,)Tx/'~,Q, = Ar~A, 

where 
T denotes matrix transposition, 
A, is a diagonal matrix of eigenvalues 2~,, 
Q, is an orthonormal matrix of eigenvectors q~, 
A, is the matrix of transformation coefficients a',~. 

The program LINMOD uses the routine EA06CD 
from A.E.R.E. (1985) to perform the eigenvalue de- 
composition. 

The orthornormal matrices Q, describe the post- 
tion of the original variables on the unit hypersphcrc 
centered at the origin. Thus the projection of the 
variables on the plane spanned by two principal axes 
lies inside the unit circle around the origin. The im- 
portance of each axis is given by the coefficient: 

~.; t00% 

z h;; 

it expresses the part of the total variance (contained 

CoregJonotJzot=on 

motrix 2 (normeO} 

Q 4g 8 =/= 

Zn~ 

Pb~ 

BRIO direction 1 

Figure 2. First two principal axes for normed coregionaliza- 
tion matrix of regional structure. 

m a coregionalization matrlxl ~,htch is explained by a 
principal axis. 

As an example, w'e shov, on Figure 2 the two most 
important principal axes (out of three) of the normed 
coregionalization matrix related to the regional struc- 
ture of the Brilon data. These two axes explain 50 and 
37'% of the correlations at the level of the regional 
structure The position of the variables on the graph 
is given by their coordinates on the principal axes, 
which are contained in the eigenvectors. 

The graph summarizes the correlations between 
the three variables at the level of the second spatial 
structure. There is an opposition of Cu and Pb on the 
tirst axis because of their negative correlation. On the 
second axis, Zn lies nearer to Cu because its correla- 
tion with Cu is higher than that with Pb. 

O R ( ; A N I Z A T I O N  OF ] ' l i e  P R O G R A N !  

A flowchart for the program [.INMOD is gtven in 
Figure 3. It shows a simple vertical structure for the 
initial version of the program The program, which 
should be interactive, could evolve later to a more 
horizont:tl structure with different modules for dif- 
ferent purposes. For example, one section of the pro- 
gram could just tit simple variograms for determining 
an adequate model. Another section could fit the 
model to all variograms of a set of variables, and so 
OI1 

The prograrn does not usc much memory because 
tt reads the experimental variograms one at a time 
from a binary file. It does not use much computing 
time either• A run of LINMOD including the fit of 
120 variograms with 16 lag classes and the subsequent 
diagonalization of two 15 × 15 coregionalization 
matrices took 56see on a VAX 11/780. So LINMOD 
could be programmed on a small machine. But the 
prior step of a geostatistical analysis, the calculation 
of the experimental variograms, requires probably a 
bigger one It takes about 20rain CPU time to cal- 
culate the 120 variograms of a set of 15 variables using 
16lag classes for 1200 samples 

C O N C L L S I O N  

The geostatistical factor analysts technique is a 
powerful tool for exploring the structure of mul- 
tivariate spatial data. It also is a simple one, as the 
models for the variogram and for the coregionaliza- 
tion are linear. Furthermore it is rather economic, 
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DEFINITION OF THE pJUtJUqk'TERS : 

- SET OF VJ~qIABLES 

- VARIOGIIAIq FUNCTIONS 

- RJUqGES 

- UEIGHTING SYSTEN 

1 
LOOP OF TIlE VAIIlOGRAIqS : 

= READ AN EXPERINENTAL VAEIOGRAIq 

FIT IT BY WEIGHTED LEAST SQUARES 

DISPLAY IT Oil A TERNINAL 

' DECOIIPOSITXOH OF 

11 

THE COREGIOllALISATION nATRICES : 

- TEST 70R POSITIVE SDII-DEFIHITUCESS 

- DISPLAY OF PAINS OF PRINCIPAL AXES 

1 
OUTPUT OF : 

= THE LINEAR VARXOGItA/q NODEL 

* THE TRANSPORIqATION COEFFICIENTS 

... FOR FACTORIAL ERXGXNG. CORRXGING. 
COSIHULATIOII 

Figure 3. Flowchart of program LINMOD. 

because once the experimental variograms have been 
calculated, just a small computer is needed to analyze 
the coregionalization. 

The linear model of the coregionalization is in- 
teresting for the scientist, because it provides a des- 
cription of the behavior of natural phenomena at 
different spatial scales. This description, together with 
the original data, can then be used to obtain maps of 
these phenomena for the sampled area using kriging 
or conditional simulation techniques. 
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A few variogram functions g(h) are listed: 

(0) The nugget effect variogram function: 

(I) The exponential variogram function: 

(21The spherical variogram function: 

sph (h, a) 

(3)The Gaussian variogram function: 

H. WACI~.ItNAGEJ. 

A P P E N D I X  1 

Variogram Functions 

f~ for h = 0 
nug(h) = forh > O. 

_h__l(h_] fo, O h 
2 t~ /  
I forh ~ a. 

< a 

[ (:):] Gauss(h,a) - I - exp - 

The Gaussian variogram function should not be used alone, as it is differentiable infinitely at the origin and corresponds 
to a phenomenon having the same property. A slight nugget-effect thus should be added always. 
(4) The power variogram function: 

pow(h,p) - h pwithO < p < 2. 

(5) The cubic variogram function: 

- a  \a] [ . 7 -  i for 0 ~ h < a cub(h,a)  - 

for h ~ a. 

A P P E N D I X  2 

Weighting Systems 

A few suggestions for setting the weights for the least-squares procedure are made: 

(1)Set all weights equal to I, 
(2)Weight by the number N~ of couples of increments in a lag class. 
(3) Weight by the inverse of the lag class number k (taken to some power), 
(4)Give each lag class an individual weight. 


