Principal Component Analysis
for autocorrelated data:

a geostatistical perspective

Hans WACKERNAGEL

Technical Report N-22/98/G
August 1998

Centre de Géostatistique — Ecole des Mines de Paris
35 rue Saint Honoré, F-77305 Fontainebleau, FRANCE
http://cg.ensmp.fr






Foreword

This document is based on talks about Principal Component Analysis given at
the Isatis User’s Meeting 1997 at Fontainebleau (Chapter 1) and at the 7th In-
ternational Meeting on Statistical Climatology at Whistler (Chapter 2). Chapter
3 follows a text written by Michel GRZEBYK and myself for the proceedings of
the 6th International Meeting on Statistical Climatology at Galway.

Various applications of Principal Component Analysis are discussed on ex-
amples and possible geostatistical extensions are listed. An appendix provides a
programming example with XLispStat.
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Chapter 1

Introduction

Principal Component Analysis (PCA) can be used for:

1. data compression,

2. multivariate outlier detection,

3. deciphering a correlation matrix,
4. identifying underlying factors,

5. detecting intrinsic correlation.

An application will be given and discussed for each topic.

PCA has been transposed from a multi-variate into a multi-station space-time
context by climatologists, where the technique received the name of Empirical
Orthogonal Functions (EOF) analysis. The multi-station implementation is obvi-
ously also very interesting for users of Isatis. For example, petroleum and mining
engineers might use EOFs for a mulli-borehole or a mulli-trace analysis.

Principal Component Analysis is well defined for the case of independent sam-
ples as they are found in psychometric or sociologic studies. The standard PCA
model can be applied to autocorrelated data in the framework of the intrinsic
correlation model. 1t is thus of paramount importance to check whether auto-
correlated data (in space or time) are intrinsically correlated. If this is not the
case the blind application of the standard PCA model may generate misleading
results.

In Chapter 2 we present standard PCA and the intrinsic correlation model
together with several examples from case studies. In Chapter 3 we explain EOF's
and discuss an illustrative analysis of a set of ammonium time series measured
along the river Elbe.

Chapter 4 is dedicated to more sophisticated geostatistical models that extend
PCA to the case of non-intrinsically correlated data.
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Chapter 2

Principal Component Analysis

Let us denote by Z;, ¢ = 1,..., N aset of variables to be analysed, e.g. petrophys-
ical properties, seismic attributes, soil pollution elements, geochemical elements,
morphological parameters, to mention but a few.

The Z; are usually correlated and the aim of Principal Component Analysis
will be to examine the system using uncorrelated factors Y.

The variances of the variables Z; are denoted o;; and their sum is called the
total variance. We look for uncorrelated new variables Y,, p = 1,..., N, which
partition optimally (in the least squares sense) the total variance.

Principal Component Analysis:

e transforms linearly the correlated variables 7Z; into uncorrelated principal
components Y.

e ordering the PCs by decreasing variance, each PC extracts a mazimal share
of the total variance.

2.1 Data compression

This is an example from geophysical exploration following [5]. Let Z be an n x N
matrix of n seismic profiles and N samples.
The PCA transformation is:

where Q is an N x N orthogonal matrix of coefficients.

The principal components matrix Y is of size n x N (like Z). The variance
of each principal component y, (a column of the matrix Y) is given by the
corresponding eigenvalue A,. We assume that the eigenvalues have been ordered
by decreasing variance.

The idea for compressing the data is to retain only the principal components
having the largest variances. Keeping M < N principal components, which
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Figure 2.1: Spin plot.

explain a substantial amount of the total variance in an n x M matrix ?, we
have the approximation

Z ~ YQ'

where 6 is an N x M matrix of eigenvectors.

This approximation is interesting for data compression if M is much smaller
than N: we can then save substantial disk space by storing the two matrices ?,
Q instead of the original data Z. The n x N numbers of the matrix Z are then
expressed with:

nx M+ Mx N numbers.

Numerical example: following HAGEN [5], having originally n = 200 good
quality seismic traces in an N = 50 sample window, if the M = 4 first
principal components express 85% of the total variance, the original data
base of 200 x 50 =10,000 samples can be reduced to:

200 x4 +4 x50 = 1,000 samples.

This new data base requires only one tenth of the storage space, preserv-
ing —as it seems— an accurate description of the main geological patterns
important for reservoir characterization.
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Al .69

\% 97 .69

P .89 b3 .87

Cr 94 72 95 .82

Cu || 77 67 712 .71 .73

Nb | .72 43 81 .71 .73 .50

As || 87 .60 87 .84 .83 .69 .76

Mo | .79 .67 81 .74 .78 .65 .78 .85

Si ||-97 -7 -94 -87 -91 -76 -73 -86 -.80

Ti ||-.93 -59 -90 -83 -85 -.66 -.69 -82 -72]|.94

Ce || -.76 -44 -73 -67 -73 -50 -57 -64 -54|.77 .81

Zr || -89 -73 -86 -78 -82 -70 -65 -80 -741].94 .91 .70

Y ||-92 -68 -89 -80 -8 -.68 -.68 -.80 -.73|.96 .96 .84 .93
H Fe Al V P Cr Cu Nb As Mo‘ Si Ti Ce Zr

Table 2.1: Correlation matrix of the Mali geochemical variables

2.2 Multivariate outliers

The first three Principal Components:

e usually concentrate a significant share of the total variance,

e however, in the presence of outliers or multimodality they do not provide

an ideal representation of the data.

Soon as the sample cloud is not of ellipsoidal shape it is interesting to ro-
tate it in a three dimensional PCA space using a spinning plot. This may help

in identifying multivariate outliers or subpopulations by finding new projection
planes which allow to split the data cloud into subclouds.

Example:

102 soil pollution samples were analyzed for 7 elements: Pb, Cd, Cr,
Cu, Ni, Zn, Mo. The first three PCs concentrate 82% of the total variance
and thus represent a very interesting subspace to have a look at the data.
Rotating the sample cloud in the coordinate system given by these three
PCs we easily find a projection plane showing three samples outside the
main cloud, see Figure 2.1.

The rotation is performed interactively on

the computer screen by pressing in turn the three buttons “pitch”, “roll”,

“ya;VV”
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Figure 2.2: Circle of correlations for the first two principal components of the
Mali geochemical variables. PC1 (ordinate) against PC2 (abscissa).

2.3 Deciphering a correlation matrix

Let V be the N x N correlation matrix of Z. The eigenvalues Ay,..., A, of V, in
decreasing order, are the variances of the principal components yq,...,y,. The
matrix Q in the PCA transformation Y = Z Q is the matrix of eigenvectors of
V.

Each eigenvector q, shrinks the matrix V to a single number A,:

Vgq, = )‘pQP

The correlations between the original variables z; and the principal compo-
nents y, can be computed from the eigenanalysis:

Corr(zia YP) = v ApGip = Tip

where ¢;, is the element number ¢ of a given eigenvector q,.

Example: 1054 soil samples from lateritic terrain in Mali analysed for 14 el-
ements: Fe, Al, V. P, Cr, Cu, Nb, As, Mo, 5i, Ti, Ce, Zr, Y; they are
described in ROQUIN ET AL. [10].!

!This spatially autocorrelated data turned out to be intrinsically correlated [8], a concept
that will be introduced at the end of this chapter.
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Figure 2.3: Sample cloud for the first two principal components of the Mali
geochemical variables. PC1 (ordinate) against PC2 (abscissa). Duricrusts: white

(Fe-Al), Flats: black (SiO,).

The Table 2.1 shows the very simple structure of the correlation matrix:
an opposition between the duricrust variables (Fe, Al, V, P, Cr, Cu, Nb,
As, Mo) and the variables of the flats (Si, Ti, Ce, Zr, Y); the variables are
positively correlated within each group and negatively correlated between
groups.

The Figure 2.2 is called the circle of correlations. 1t displays the correla-
tions r;, between the original variables z; and a pair of principal compo-
nents (factors). The coordinates of the variables on Figure 2.2 are obtained
using the values of correlations with the first (ordinate) and the second (ab-
scissa) principal component. The first principal component can be termed
a “duricrust factor” as it displays in an obvious way the opposition between
the variables characteristic of the duricrust variables (Fe,...) and the flats
(Si,...).

The Figure 2.3 plots the sample cloud in the coordinate system provided by
the first (ordinate) and the second (abscissa) principal components. Two

subclouds can be seen: white coloured dots represent the samples from the
duricrusts and black dots represent the samples from the flats.

The Figure 2.4shows the geographical map of sample locations. The white
coloured dots are samples classified as “duricrust” while the black dots are
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Figure 2.4: Geographical map of sample locations in a 4 x 5 km? area. Duricrusts:

white (Fe-Al), Flats: black (Si0O,) .

viewed as from “flats”. Actually this map matches well the geological map
displayed in ROQUIN ET AL. (p152).

2.4 Identifying underlying factors

In a multigaussian context, the uncorrelated principal components can be viewed
as independent factors. External evidence may confirm the interpretation of
patterns in the correlation between variables and factors. A first example was
already provided with the “duricrust factor” of the Mali data. Now let us see a
second example from human biology.

Example: MORRISON [9] (pp282-284) examines bone length data for 276 leghorn
fowl. The measured bones are humerus, tibia, ulna and femur.

The following table exhibits the correlations between the four bone length
measurements on 256 individuals:

Humerus 1

Tibia 875 1

Ulna .940 877 1

Femur 878 .924 .886 1

H Humerus Tibia Ulna Femur
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The correlation coefficients are all positive, range between .87 and .94, and
seem quite alike. No distinctive pattern is to be seen in these numbers.

The following table shows the correlations between the four bone length
measurements and the first two principal components:

PC1 | PC2
Humerus 96 | -.22
Ulna 96 | -.20
Tibia .96 22
Femur .96 .20
Component variance | 3.69 | .17
Percentage 92 % | 4%

The first principal component has an eigenvalue of 3.69 which corresponds
to 92% of the total variance, while the second principal component accounts
for only 4% of the total variance, so that the third and fourth components
share the remaining 4%.

PC1 is positively correlated with all four variables, with an equal strength of
.96. This strong positive correlation of all variables with the first principal
component is usually explained in morphometry by the fact that all bone
lengths are proportional to the size of the individuals and so PC1 is termed
a “size factor”.

PC2 is negatively correlated with Humerus and Ulna, while it is positively
correlated with Tibia and Femur. The first two are bones of the wings of
the leghorn fowl, while the other two bones belong to their legs. This means
that some individuals may have long legs as compared to their wing size,
and vice-versa. This is why PC2 is usually called a “shape factor”.

Finally we redisplay the correlation matrix using the knowledge gained from

the PCA:
Humerus 1
Ulna .940 1
Tibia 875 877 1
Femur 878 .886 .924 1
H Humerus Ulna ‘ Tibia Femur

By grouping wing and leg bones its structure becomes better visible: the
between-group correlations are weaker than the within-group correlations,
i.e. the bones within a wing or a leg are better correlated (.94, .92) than
between legs and wings (.87 to .89).
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Principal Component Analysis is thus a useful tool to rearrange the sequence
of the variables so that patterns of correlation may become visible directly on the
correlation matrix.

2.5 Detecting intrinsic correlation

With multivariate data autocorrelated in space or time principal components can
be used to check whether the data comply with the intrinsic correlation model.

In the intrinsic correlation model all direct and cross variograms 7;;(h) of a
set of variables are proportional to a basic variogram ~(h):

"y”(h) = bij "y(h) for l,J = 1, .. .,N

where h is a vector linking pairs of points in geographical space or time and b;;
are proportionality coefficients.

In matrix notation this model for the matrix I'(h) of direct and cross vari-
ograms 7;;(h) is written:

I(h) = B(h)

where B is a variance-covariance matrix.
A coregionalization is intrinsically correlated when the codispersion coeffi-
cients:

ccis(h) = 7:j(h)
' 7i:(h) ;(h)

are constant for any value of h, i.e. do not depend on spatial scale.

With the intrinsic correlation model:
bi;  ~(h)
ceilh) = —2 70
Vi b v(h)

i.e. the correlation r;; between variables is not a function of h.
Intrinsic correlation can be checked using PCA in the following way:

1. Compute principal components for the variable set.

2. Compute the cross-variograms between the first few principal components
concentrating most of the total variance.

In the case of intrinsic correlation, the cross-variograms between PCs are all
zZero.

However, if the cross-variograms between PCs are not nil, the principal com-
ponents are correlated at particular spatial or time scales. In this situation they
are only globally orthogonal, but not at any scale, and it is advisable to abandon
the intrinsic correlation model in favour of a more sophisticated coregionalization
model.
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Correlated at
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PC3 & PC4
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Figure 2.5: Cross-variogram between PCs.

Example: The Figure 2.5 shows an example of a pair of principal components
whose cross-variogram only vanishes at large scale. For this data the in-
trinsic correlation model clearly is not adequate.

A more detailed discussion of this example, explaining in particular how
the ordinate of Figure 2.5 has been scaled, is provided in [17].
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Chapter 3

Empirical Orthogonal Functions

Empirical Orthogonal Functions (EOFs) are an application of PCA to time series
and have been widely used in meteorology and climatology since the 1950s [13,
14, 6]. As multiple or multivariate time series usually are autocorrelated we show
that EOFs can only make sense if the data are in accordance with the intrinsic
correlation model.

3.1 Definition of EOF's

EOFs are an application of Principal Component Analysis to multiple or multi-
variate time series. We define:

2(t) = (Zi(1),..., Z:(1),..., Zn(1))

a vector of time dependent second-order stationary random functions Z;(¢) where
the index ¢ refers either to different stations (multiple time series) or to different
variables at one station (multivariate time series).

The variance of the vector z(t) is defined as:

Var(z(t)) = [JZ']']:V,

where V is a variance-covariance matrix.
The correlated Z;(t) are projected onto uncorrelated Empirical Orthogonal
Functions Y,(t) using an orthonormal N x N matrix Q,

2(t) = Qy(?)

where y(t) = (Yi(t),...,Y,(1),..., Yx(1)).

Conversely, we have the equation

y(t) = Q' z(t)
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with

E[y(t)] = 0 and var(y(t)) = A

where A is the diagonal matrix of the eigenvalues of V and Q is the corresponding
matrix of eigenvectors with

Q' Q =1

3.2 EOFs and intrinsic correlation

The problem with EOF analysis is to know whether the matrix function Cy (1),
i.e. the matrix of cross-covariance functions between EOFs,

cov(y(t),y(t+r)) = [C’pq(r)] = Cy(7),

has a diagonal structure?
The intrinsic correlation model for z is:

cov(z(t),Z(t—l-T)) = Cz(1) = Vop(7)

where p(7) is an autocorrelation function.
The intrinsic correlation model for the EOFs is then

Cy(r) = Ap(r)

so that the EOFs are orthogonal whatsoever the time-scale 7.

Principal Component Analysis was originally designed for the iid (independent
identically distributed random variables) model, which is a particular case of the
intrinsic correlation model. The intrinsic correlation model allows to extend PCA
to the case of autocorrelated (i.e. non-independent) data. The question is now:
do the data follow the intrinsic correlation model? How can we check this?

3.3 Checking for intrinsic correlation

The first test that can be applied is to check graphically whether the sample
codispersion functions

() = 755(7)

cc (T
V() 235(7)

L)

are constant and equal to the correlation coefficient r;.

When N is large, there is a large number of codispersion functions to plot
and so the following second test is more straightforward. It consists in checking
whether the cross-covariance functions between sample EOFs, C (1), are zero
for any lag 7 when p # q.
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Figure 3.1: Position of the stations along the river Elbe.

3.4 Cross-covariance function and variogram

We recall briefly the relations between the cross-covariance function and the cross-
variogram [17]. The cross-covariance function can be split into an even and an

odd term:

Cij(r) = % <Cij(7') + Oij(_7)>
even term
+5 ()~ Cut-n))
odd term

The eross-variogram

3ilr) = 5 B[ (2047 = 20) - (204 71) - 2,0)) |

is an even function. In the case of second-order stationarity it corresponds to the

even part of the cross-covariance function

Vi (1) = 0ij — % <Cz'j(7) + Cz‘j(—T))
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Wit 1

MaL .90 1

MaR .95 .96 1

WalL, 91 91 91 1

WaR .84 .85 .89 .88 1

Cum 91 .90 .92 .93 .88 1

Sha .92 .88 .89 .93 .80 .88 1

Boi .90 .86 .86 .89 .73 .84 .93 1

Zol .92 .87 91 .93 .84 .92 .93 91 1

See .93 .89 91 .95 .83 .92 .94 .90 .95 1

Shu .87 .83 .87 .94 .83 .88 .88 .85 .92 .96 1

Gra .87 .79 .85 .89 .78 .87 .88 .86 91 .93 .95 1

Bru .81 .78 .81 .85 .75 .83 .85 .83 .86 .88 .90 .93 1
Cux .57 .60 .59 .61 .59 .57 .62 .63 .63 .66 .65 .60 .76 1

|| Wit MalL, MaR WalL WaR Cum Sha Boi Zol See Shu Gra Bru Cux

Table 3.1: Correlation matrix between Elbe stations for ammonium.

3.5 Example: Elbe Ammonium data

The data consist of ammonium (NHy) measurements and stems from 14 stations
along the Elbe river. Sampling was performed every other week from Decem-
ber 1993 to December 1996. We use data that have been deseasonalized by
BERTINO [1]. At each station the data have been standardized separately, i.e.
at each station the samples have been rescaled to have a zero mean and a unit
variance.

The locations of the 14 stations along the river Elbe are shown on Figure 3.1,
starting from Wittenberg, which is at km214 from the Czech border, and ending
at km725 in Cuxhaven at the North Sea. The correlation matrix between the 14
stations for ammonium has been is shown on Table 3.1. These correlations are
all positive and above .5.

3.5.1 Correlation between EOFs and stations

The correlations between the first two EOF's and the 14 stations are the following:

EOF1 .95 .93 .95 97 .89 .95 .95 .93 97 .98 .95 .94 91 .69
EOF2 15 14 -.16 -.08 -.12 -.14  -.04 .01 -.04 .01 .05 .05 .28 .67

|| Wit Mal.L. MaR Wal. WaR Cum Sha Boi Zol See Shu Gra Bru Cux

The corresponding circle of correlations is shown on Figure 3.2.

The first EOF can be interpreted as a “size effect”, in analogy to the mor-
phometric example of the previous chapter, while the second EOF reproduces
roughly the geographical order of the stations and opposes the “upstream” and
the “estuarine” sections of the Elbe.

The first two EOFs account for 91% of the total variance. The screegraph is
shown on Figure 3.3. The screegraph is a plot of the variances of the EOFs (as
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Figure 3.2: Correlation circle for the first two EOFs.
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Figure 3.3: Scree graph: plot of the variances of all EOFs in decreasing order.
The variances of the first two EOFs are circled.
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percentages of the total variance) in decreasing order. The first EOF explains
86% of the total variance, while the second EOF amounts to 4.7%, which is
already less than 1/14=7.1%, i.e. the variance contributed by each variable.

3.5.2 A traveling anomaly

Now we plot ammonium against time at the stations Wittenberg and Cuxhaven
on Figure 3.4. These stations are located at both ends of the available set.
Although the same plots can be generated for all intermediate stations, we shall
only display —for the sake of sparing space— the first and the last pictures of the
“movie” of ammonium traveling down the river Elbe.

An anomaly can be seen on Figure 3.4 at time steps 1, 2, 3. At station
Wittenberg the three values decrease in time. At station Cuxhaven at time step
1, the anomaly is still low; it peaks only at time step 2, two weeks later, which is
about the average water transport time from Wittenberg to Cuxhaven.

Please note on the ordinates on Figure 3.4 that the values have been standard-
ized separately at each station and that consequently the anomaly is more outly-
ing (in standardized units) at Wittenberg than it is at Cuxhaven. The anomaly
looses some strength diluting progressively in the river as it travels along the 14
stations.

Next we plot the first two EOFs against time on Figure 3.5. The “size effect”
EOF tells us that there is an anomaly that starts at time step 1 and decreases
with time until time step 3; the anomaly thus has an extension of 4 weeks.
The “geographical” EOF shows us that the anomaly starts at time step 1 in
the upstream part of the river, reaches the estuary after a fortnight at time
step 2 and is entirely in the estuary yet another fortnight later, at time step 3.
It is satisfactory that the interpretation of the EOFs enables us to understand
both time variation of the size of the anomaly (EOF1) and its traveling through
geographical space (EOF2).

3.5.3 Checking for intrinsic correlation

To check for intrinsic correlation we compute the codispersion functions between
the stations. The codispersion between the stations Wittenberg and Cuxhaven
is displayed on Figure 3.6. Instead of being constant and equal to the correlation
coefficient, it starts at a value of .2 and reaches the correlation of r;; = .57 at a
lag greater than 8 weeks.

Computing the cross-variogram between the first two EOFs on Figure 3.7
does not exhibit truly uncorrelated EOFs, especially at lags beyond half a year.

As the cross-variogram is an even function, it is inappropriate to express the
asymetry induced in the time-series by the water transport. Thus we compute
the odd term of the cross-correlation function, which is displayed on Figure 3.8.
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Clearly this odd term is far from being zero, showing the inadequacy of the cross-
variogram, which represents only the even term of the cross-correlation function.
Notice that the graph has been scaled using the overall correlation coefficient of
ry = DT,

The cross-correlation function between the first two EOFs is displayed on
Figure 3.9. The two EOFs show a distinctive time structure, although they are
by definition globally uncorrelated!

To try to eliminate the lagged correlation induced by water transport, we shift
back by two weeks the Cuxhaven series against the Wittenberg series. The odd
term of the cross-correlation function is displayed on Figure 3.10: it has flattened
down at the origin for lags below six weeks. The two weeks shift thus explains
well the short term lagged correlation. Note that the overall correlation between
the two series has increased to r;; = .64.

The codispersion function between Wittenberg and Cuxhaven on Figure 3.11
is less steep in the neighborhood of the origin after the backshift, than it was on
Figure 3.6 without shifting. The two weeks backshift has thus brought us nearer
to the intrinsic correlation model for this pair of stations.

BERTINO [1] has rescaled the time coordinates of all 14 stations using data
on water transport times. In this new Lagrangian system of time coordinates the
ammonium measurements at the 14 stations appear to be intrinsically autocor-
related.

The transformation of BERTINO turns out to be actually only weakly nonlin-
ear. This explains to us the fact that the EOFs were interpretable in this case
study: the time series are approximately intrinsically correlated up to a backshift.
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Figure 3.6: Codispersion function between Wittenberg and Cuxhaven stations.
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Odd term: Wittenberg & Cuxhaven

| r=.57
R} A /ﬂ/"\ufn
= o \ : / A\ u/“/
VA \
8/ \ /
-/ \ /
05 |_A(Eo.(c\)( | 0.5

Figure 3.8: Odd term of the cross-correlation function between Wittenberg and

Cuxhaven stations.

Cross-Correlation:

EOF1 & EOF 2

Figure 3.9: Cross-correlation function between the first two EOFs.

) . d
3| A
i / ]

3| \ \ |
N ANAN \ /
YAV AR
S n/“/n/ \/“/ \ f

-6.5 LAGO'(gear) 0:5



24

PCA

0.0

0.6

0.4

0.2

Odd term: Wittenberg & Cuxhaven (2 weeks shift)

0.2

r=.64
AN
N/ \
05 0.0 0.5
LAG (Year)

Figure 3.10: Shifting Cuxhaven two weeks back against Wittenberg: resulting
odd term of the cross-correlation function.
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Chapter 4

Extensions

The question which has been left open is: what to do when the data do not
comply with the intrinsic correlation model? In this chapter we shall concentrate
on geostatistical alternatives.

In geostatistics, methods for characterizing the spatial or temporal variation at
different scales of a multivariate system have attracted much attention during the
last two decades. Applications have been particularly numerous in soil science [2].
Most work was based on the linear model of coregionalization (LMC) which
is suitable for a system that can be described adequately by direct and cross
variograms.

More recently, work done on complex kriging (for estimating vector variables
in 2D geographical space) has inspired the bilinear model of coregionalization
(BMC) which is more general in the sense that it allows the description of a
system for which the cross-covariance functions are not necessarily even.

4.1 Cross-covariance functions

Cross-covariance functions are useful in describing the cross-correlations in a set
of variables which can be:

e different types of measurements located in space or time,
e measurements of one quantity in a spatial region at different times,

e measurements of one quantity along time at different sites of a spatial re-
gion.

The cross-covariance functions are not necessarily even as there can be various
kinds of delay or shift effects at different charateristic space or time scales between
the variables. At each charateristic scale of index u we shall however assume that
the space or time correlation is governed by one correlation function p,(h).
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We denote C;;(h) the cross-covariance function between two jointly second-
order stationary random functions Z;(x) and Z;(x), where x is the vector of the
coordinates of a point in space or time, h is a vector linking a pair of points in
space or time, 7 is a real or complex random variable, : and j are indices of a set of
N random functions. The matrix C;;(h) of direct and cross covariance functions
for a given set of random functions is charaterized by Cramér’s generalization of
the Bochner-Khintchine theorem.

4.2 Intrinsic correlation model

The simplest model for real random functions is the following
C(h) = Vp(h)

where V is the matrix of variances and covariances o;; and p(h) is a direct
correlation function.
It is called the intrinsic correlation model because the correlation between
two random functions
i; p(h) gy

Voii p(h) o5 p(h) Vi i

does not depend upon spatial scale.

The linear model associated to the intrinsic correlation model is written

Zi(x) = Z_:lapiyp(x)

where Y,(x) are N uncorrelated random functions whose direct covariance func-
tions p(h) do not depend on the index p and a,; are transformation coefficients.

From a known intrinsic correlation model, one possible method to specify
the transformation coefficients is based on the eigenvalue decomposition of the
variance-covariance matrix V and the factors Y, can then be interpreted as prin-
cipal components.

The intrinsic correlation model is an important reference case when the vari-
ables are all sampled at the same locations, because their estimation is simpli-

fied [16, 17].
4.3 Linear model of coregionalization

A more sophisticated model for a set of real random functions is the multivariate
nested covariance function model

C(h) = E_:Bupu(h)
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where u is an index for a set of S+1 characteristic spatial or temporal scales
and the coregionalization matrices B, are variance-covariance matrices describing
multivariate correlation at these charateristic scales of the phenonenon.

The associated random function model is the linear model of coregionalization

(LMC)

Zi(x) = D D apiu Yyu(X)

u=0 p=1

where a set of N uncorrelated factors is defined at each of the S+1 charateristic
scales. A possibility to specify the LMC from a known multivariate nested co-
variance function model is by performing a principal component analysis based
on the eigenvalue decomposition of the coregionalization matrices which yields
the transformation coefficients a,;,.

4.4 PCA on the basis of an LMC

The standard PCA model is only adequate for data that can be viewed as a
realization of the intrinsic correlation model. The LMC covers a more general
class of phenomena that can be described with a nested multivariate variogram.
In this model we have different correlation structures at different charateristic
spatial or time scales. A coregionalized PCA is performed separately for each of
these scales.

The eigenanalysis is performed on each coregionalization matrix B, of the
nested multivariate variogram. The correlation coefficients r;,, between the orig-
inal variables and the principal components at a given scale u can be used to
construct correlation circles to understand the correlation structure at that spa-
tial or time scale.

Estimates Y}, (x) of principal components are obtained by cokriging and can
be plotted as geographical maps.

Coregionalized PCA has been successfully applied in numerous case studies
(see [17, 2] for references). Coregionalized EOFs have first been applied in [12].

4.5 Complex LMC

The real linear model of coregionalization has the limitation that it can only serve
to model a set of covariance functions in which the cross-covariance functions are
even. It is necessary to introduce a complex linear model of coregionalization
and to take its real part, the bilinear model of coregionalization, when the cross-
covariance functions in a real covariance function matrix are not even.

In geostatistics, the estimation of two dimensional vector variables as complex
variables was studied by LAJAUNIE AND BEJaoul [7], who examined ways of
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modeling a complex covariance function. This work inspired the formulation of
the bilinear model of coregionalization [3, 17].
The complex analogue to the intrinsic correlation model is

C(h) = Bp(h) = Ex(h)—Fr(h)+i(Ex(h)+ Fx(h))

where p(h) = y(h) +ix(h) is a scalar complex covariance function and B is a
hermitian positive semi-definite matrix with B = E +iF. The matrix E is a
symmetric positive semi-definite matrix while F is antisymmetric.

Naturally we can consider a nested complex multivariate covariance function
model of the type C(h) = Y, B, pu(h) with a corresponding complex LMC.

4.6 Bilinear model of coregionalization

The real LMC is in particular not adequate for multivariate time series analysis
where delay effects or phase shifts are common and cannot be included in a model
with even cross covariances. A model for real random functions with non even
real cross covariance functions can be derived from the complex LMC by taking
its real part. We obtain the bilinear model of coregionalization (BMC) which is
composed of the linear combination of two sets of factors U,,(x) and V,,(x) with
two sets of transformation coefficients ¢,,; and d,;,

S N

Zi(x) = 303 (i Uy (%) = dyus V()

u=0 p=1

In the case of only one spatial scale (the nested case is analog) we can drop

the index v and have the BMC

N
Zix) = 3 (e Uplx) — d Vi (x))
p=1
with
N N
p=1 p=1

where €;; and f;; are respectively the elements of matrices E and F such that
B=E+iF.
Restraining the covariance functions for U(x) and V(x) to be of the form

CUU(h) = va(h) = %X(h) and CUv(—h) = —CUv(h) = %/{(h)



Extensions 29

where x(h)+ik(h) is a complex covariance function with an odd imaginary part,
the cross-covariance function between two real variables is
N (] /]
el +dd
Ci(h) = pp T % %
= 3 (5

p=1

Jdt — ¢t i
x(h) — %ﬂﬁ(h))

The multivariate covariance function model associated to the BMC is thus
1
Ch) = 3 (Ex(h)—Fr(h))
and is real. See GRZEBYK [3] for details on fitting algorithms and an example of

the fit of a covariance model based on a BMC to data from three remote sensing
channels of a Landsat satellite.
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Chapter 5

Conclusion

Principal Component Analysis (PCA) is used for:

e data compression

e multivariate outlier detection,

o deciphering a correlation matrix,
¢ identifying underlying factors,

e detecting intrinsic correlation.

In applications that do not fit the intrinsic correlation model, PCA is a power-
ful tool for defining linear coregionalization models (LMC, BMC, complex LMC)
to:

e describe, analyze and interpret the correlation structure of a multivariate
spatial or temporal system,

e estimate or simulate components of such a system.

Thus both standard and coregionalized PCA are basic and essential tools for
geostatisticians dealing with multidimensional data sets.
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Appendix A

XLispStat programming example

The XLispStat language was developped by Luke TIERNEY and can be obtained
by ftp from the School of Statistics of the University of Minnesota,

http://www.stat.umn.edu

in Macintosh, Unix and Windows versions.

XLispStat is based on the Lisp programming language with its “polish nota-
tion” (first the operator, then the arguments) and many parentheses.

In this appendix we present the functions used to analyze the Elbe data.

Standardisation

The function std calculates the mean and standard deviation of a vector of data
x and returns the standardised data.

(defun std (x)
(let* ( ( m (mean x))
( s (standard-deviation x))
( ma (make-array (length x) :initial-element m))
( sa (make-array (length x) :initial-element s))
)

(/ (- x ma) sa))

Reading a data set

The function readelbe reads the Elbe ammonium data in an ASCII file called
AmmoElbe.xls. Fach station data is standardized using the function std. The
position of the measurement stations along the Elbe is stored in the vector Km.
The names of the stations are stored in the vector Names. The function mapkm
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is executed to plot the position of the stations along the Elbe (see below). The
inter-station variance-covariance matrix is computed and stored in the matrix
Covmat. The standardized station data vectors are stored in the matrix Datmat.

(defun readelbe ()

(def ammo (read-data-columns

" AmmoElbe.xls” 15))

(def Date (select ammo 0))

(def Wit (std (select ammo 1)))

(def MaL (std (select ammo 2)))

(def MaR (std (select ammo 3)))

(def Wal (std (select ammo 4)))

(def WaR (std (select ammo 5)))

(def Cum (std (select ammo 6)))
(def Sha (std (select ammo 7)))
(def Boi (std (select ammo 8)))
(def Zol (std (select ammo 9)))
(def See (std (select ammo 10)))
(def Shu (std (select ammo 11)))
(def Gra (std (select ammo 12)))
(def Bru (std (select ammo 13)))
(def Cux (std (select ammo 14)))
(def Km (

st

list 214.1 318 322 459 459 470 474.5 559 598.7
628.8 641 660.5 693 725.2))
(def Names (list "Wit” "MalL” "MaR"” "Wal” "WaR"” "Cum” "Sha” "Boi"
"Zol" "See” "Shu” "Gra” "Bru” "Cux"))
(mapkm)
(def Covmat (covariance-matrix Wit MaL MaR Wal WaR Cum Sha Boi
Zol See Shu Gra Bru Cux))
(def Datmat (bind-rows Wit MaL MaR Wal WaR Cum Sha Boi
Zol See Shu Gra Bru Cux))
)

Plotting the position of the stations

The function mapkm plots the station numbers (in reverse order) against the
locations on the river. The plot-object mapk gets the status “linked” (to the
other windows). Dragging the pointer over the window, the names of the stations
will appear.

(defun mapkm ()
(def mapk (plot-points Km (reverse (+ (iseq (length Km)) 1)) :point-labels Names :ti-
tle "Km from border”) )
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(send mapk :linked t)
(send mapk :showing-labels t)

)

Example: Figure 3.1, p15.

Plotting the correlation circle

The function pcav plots the location of the stations within the correlation cicle
in the plane spanned by two EOFs.

The eigenvalues and eigenvectors of the correlation matrix are computed. The
EOF indices are decreased by one because in Lisp indices start from zero. The
correlations between the EOF's and the stations are obtained by multiplying each
eigenvector with the square root of the corresponding eigenvalue.

It should be noted that eigenvectors are defined up to the sign: here, for
display reasons, we preferred to invert the sign ((- 0 eigvector)). As sign does not
matter, a software should give the user the possibility to invert the sign of each
eigenvector if desired.

We first plot the positions (vvl, ww2) of the stations within the unit circle.
Then we draw the circle and the axes. The window is set to the status “linked”,
so that the position of selected stations in the EOF plane can be compared to
their corresponding position in geographical space (window mapkm).

Dragging the pointer over the window, the names of the stations will appear.

(defun pcav (covmat varnam factorl factor2 titulum)
(let* ( (eigval (eigenvalues covmat))
(eigvec (eigenvectors covmat))
(ff1 (- factorl 1))
(ff2 (- factor2 1))
(vl (* (sqrt (select eigval ff1)) (- 0 (select eigvec ff1))))
(w2 (* (sqrt (select eigval ff2)) (- 0 (select eigvec ff2))))
ax '(0 0))
ay (-11))
cc (rseq -3.14159 3.14159 100))
ces (sin cc))
ccc (cos cc))

<

Nt TN TN TN N N

setf pcavplot (plot-points vvl vv2 :point-labels varnam))
send pcavplot :add-lines ccc ccs)

send pcavplot :add-lines ax ay)

send pcavplot :add-lines ay ax)

send pcavplot :adjust-to-data)

send pcavplot :x-axis nil nil 0)

(
(
(
(
(
(
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(send pcavplot :y-axis nil nil 0 :redraw)
(send pcavplot :title titulum)

(send pcavplot :showing-labels t)
(send pcavplot :linked t)

)

)

Examples: Figure 3.2, p17; Figure 2.2, p6.

The function pcavl calls the function pcav twice to draw the correlation circles
corresponding to the pairs (1, 2) and (2, 3) of EOFs.

Usually T prefer to draw the first EOF vertically and the second EOF hori-
zontally because it frequently happens that on the first EOF all correlations with
the stations have the same sign (e.g. when correlations are all positive between
stations) and only the second EOF has discriminatory power (correlations of sta-
tions with the second EOF have a different signs). The same is true in the context
of PCA for morphometric variables in biology, when the first PC represents a size
effect and the second PC represents a shape effect.

Example: Table on p9.

The user of a software may thus be interested in choosing which axis he calls
the abscissa and which one he calls the ordinate. My suggestion is that the first
EOF/PC should be, by default, on the ordinate and not on the abscissa.

(defun pcavl ()
(pcav Covmat Names 2 1 "PCA: Fl=vertical & F2=horizontal”)
(pcav Covmat Names 3 2 "PCA: F2=vertical & F3=horizontal”)

)

Plotting the position of the samples in 2D EOF
space

The function pcas plots the samples in 2D EOF space.

The eigenvalues and eigenvectors of the variance-covariance matrix are com-
puted.

The transformation coefficients of the station data into EOFs are computed by
multiplying the eigenvectors by the inverse of the square root of the eigenvalues.

The EOF's are obtained by multiplying the station data with the transforma-
tion coefficients.

The position of the samples in the plane spanned by a pair of EOF's is plotted
and the corresponding window is set to the status “linked”.

(defun pcas (zall covmat factorl factor2 titulum)
let* ( (eigval (eigenvalues covmat
8 8
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(eigvec (eigenvectors covmat))
(ff1 (- factorl 1))

(ff2 (- factor2 1))

(vl (* (/ 1 (sqrt (select eigval ff1))) (- 0 (select eigvec ff1))))

(w2 (* (/ 1 (sqrt (select eigval ff2))) (- 0 (select eigvec ff2))))

(yyl (matmult vl zall))

(yy2 (matmult w2 zall))

)
(setf pcasplot (plot-points yyl yy2))
(send pcasplot :title titulum)

(send pcasplot :linked t)
)
)

Example: Figure 2.3, p7.

Spinning the samples in 3D EOF space

The EOFs have the property that they concentrate a significant part of the total
variance in a low-dimensional space. It is thus of interest to be able to examine
the sample cloud in 3D EOF space.

The function pcaspin allows to rotate the sample cloud in 3D EOF space and to
generate a projection of the sample cloud on any arbitrary plane passing through
the origin within this space. The eigenvalues and eigenvectors of the variance-
covariance matrix are computed. The transformation coefficients of the station
data into EOFs are computed by multiplying the eigenvectors by the inverse of
the square root of the eigenvalues. The EOFs are obtained by multiplying the
station data with the transformation coefficients. The position of the samples in
the plane spanned by a pair of EOF's is plotted, the third EOF being at right
angle to the screen in starting position. The corresponding window is set to the
status “linked” to allow comparison with scatterplots between each EOF and the
time axis (spmf).

Three buttons (because for 3D rotation we need the three Euler angles) give
the user the opportunity to spin the sample cloud and thus examine it from all
possible angles. This is useful for multivariate outlier detection or for identifying
subpopulations.

(defun pcaspin (zall covmat factorl factor2 factor3 titulum If1 If2 If3)
(let* ( (eigval (eigenvalues covmat))
(eigvec (eigenvectors covmat))
(ff1 (- factorl 1))
(ff2 (- factor2 1))
(ff3 (- factor3 1))
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(vl (* (/ 1 (sqrt (select eigval ff1))) (- O (select eigvec ff1))))
(w2 (* (/ 1 (sqrt (select eigval ff2))) (- 0 (select eigvec ff2))))
(w3 (* (/ 1 (sqrt (select eigval ff3))) (- 0 (select eigvec ff3))))

def Y2 (matmult w2 zall))

)
(def Y1 (matmult vl zall))
(
(def Y3 (matmult w3 zall))

)
(setf pcaspin (spin-plot (list Y2 Y1 Y3)
:variable-labels (list If2 If1 [f3) ))
(send pcaspin :title titulum)
(send pcaspin :linked t)
(setf spmf

(scatterplot-matrix (list Date Y1 Y2 Y3)

:variable-labels

(list " Time” If1 If2 13 ))
)

(send spmf :linked t)

)

Example: Figure 2.1, p4.

The function pcasl draws 2D projections of the sample cloud for the EOF
pairs (1, 2) and (2, 3). It generates the spin plot window for the EOF triple (1,

2, 3).

(defun pcasl ()
pcas Datmat Covmat 2 1 "PCA: Fl=vertical & F2=horizontal” )
pcas Datmat Covmat 3 2 "PCA: F2=vertical & F3=horizontal” )

(
(
(pcaspin Datmat Covmat 1 2 3 "PCA: spin F1, F2, F3" "F1” "F2" "F3")
)

Screegraph

The function pcaelbe generates the whole EOF analysis by calling pcavl and

pcasl. It also generates a screegraph.

The eigenvalues of the variance-covariance matrix are computed. The XLisp-
Stat function eigenvalues actually provides them in decreasing order. The scree-
graph is a plot of the eigenvalue against its number. Usually the eigenvalues are
displayed as a percentage of the total variance (which is equal to the sum of the

eigenvalues).

(defun pcaelbe ()
(pcavl)
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(pcasl)
(def Eval (eigenvalues Covmat))

(plot-points (+ (iseq (length Eval)) 1) (* (/ Eval (length Eval)) 100)
:xlab "Number” :title "Screegraph”)

)

Example: Figure 3.3, p17.



